1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
SUBROUTINE SB03MU( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
$ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for the N1-by-N2 matrix X, 1 <= N1,N2 <= 2, in
C
C ISGN*op(TL)*X*op(TR) - X = SCALE*B,
C
C where TL is N1-by-N1, TR is N2-by-N2, B is N1-by-N2, and ISGN = 1
C or -1. op(T) = T or T', where T' denotes the transpose of T.
C
C ARGUMENTS
C
C Mode Parameters
C
C LTRANL LOGICAL
C Specifies the form of op(TL) to be used, as follows:
C = .FALSE.: op(TL) = TL,
C = .TRUE. : op(TL) = TL'.
C
C LTRANR LOGICAL
C Specifies the form of op(TR) to be used, as follows:
C = .FALSE.: op(TR) = TR,
C = .TRUE. : op(TR) = TR'.
C
C ISGN INTEGER
C Specifies the sign of the equation as described before.
C ISGN may only be 1 or -1.
C
C Input/Output Parameters
C
C N1 (input) INTEGER
C The order of matrix TL. N1 may only be 0, 1 or 2.
C
C N2 (input) INTEGER
C The order of matrix TR. N2 may only be 0, 1 or 2.
C
C TL (input) DOUBLE PRECISION array, dimension (LDTL,2)
C The leading N1-by-N1 part of this array must contain the
C matrix TL.
C
C LDTL INTEGER
C The leading dimension of array TL. LDTL >= MAX(1,N1).
C
C TR (input) DOUBLE PRECISION array, dimension (LDTR,2)
C The leading N2-by-N2 part of this array must contain the
C matrix TR.
C
C LDTR INTEGER
C The leading dimension of array TR. LDTR >= MAX(1,N2).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,2)
C The leading N1-by-N2 part of this array must contain the
C right-hand side of the equation.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N1).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor. SCALE is chosen less than or equal to 1
C to prevent the solution overflowing.
C
C X (output) DOUBLE PRECISION array, dimension (LDX,N2)
C The leading N1-by-N2 part of this array contains the
C solution of the equation.
C Note that X may be identified with B in the calling
C statement.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= MAX(1,N1).
C
C XNORM (output) DOUBLE PRECISION
C The infinity-norm of the solution.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if TL and TR have almost reciprocal eigenvalues, so
C TL or TR is perturbed to get a nonsingular equation.
C
C NOTE: In the interests of speed, this routine does not
C check the inputs for errors.
C
C METHOD
C
C The equivalent linear algebraic system of equations is formed and
C solved using Gaussian elimination with complete pivoting.
C
C REFERENCES
C
C [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., and Sorensen, D.
C LAPACK Users' Guide: Second Edition.
C SIAM, Philadelphia, 1995.
C
C NUMERICAL ASPECTS
C
C The algorithm is stable and reliable, since Gaussian elimination
C with complete pivoting is used.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, May 1997.
C Based on DLASD2 by P. Petkov, Tech. University of Sofia, September
C 1993.
C
C REVISIONS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, May 1999.
C
C KEYWORDS
C
C Discrete-time system, Sylvester equation, matrix algebra.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF, EIGHT
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0,
$ TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
C ..
C .. Scalar Arguments ..
LOGICAL LTRANL, LTRANR
INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
DOUBLE PRECISION SCALE, XNORM
C ..
C .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
$ X( LDX, * )
C ..
C .. Local Scalars ..
LOGICAL BSWAP, XSWAP
INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K
DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
$ TEMP, U11, U12, U22, XMAX
C ..
C .. Local Arrays ..
LOGICAL BSWPIV( 4 ), XSWPIV( 4 )
INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
$ LOCU22( 4 )
DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
C ..
C .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, IDAMAX
C ..
C .. External Subroutines ..
EXTERNAL DSWAP
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX
C ..
C .. Data statements ..
DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
$ LOCU22 / 4, 3, 2, 1 /
DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
C ..
C .. Executable Statements ..
C
C Do not check the input parameters for errors.
C
INFO = 0
SCALE = ONE
C
C Quick return if possible.
C
IF( N1.EQ.0 .OR. N2.EQ.0 ) THEN
XNORM = ZERO
RETURN
END IF
C
C Set constants to control overflow.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
SGN = ISGN
C
K = N1 + N1 + N2 - 2
GO TO ( 10, 20, 30, 50 )K
C
C 1-by-1: SGN*TL11*X*TR11 - X = B11.
C
10 CONTINUE
TAU1 = SGN*TL( 1, 1 )*TR( 1, 1 ) - ONE
BET = ABS( TAU1 )
IF( BET.LE.SMLNUM ) THEN
TAU1 = SMLNUM
BET = SMLNUM
INFO = 1
END IF
C
GAM = ABS( B( 1, 1 ) )
IF( SMLNUM*GAM.GT.BET )
$ SCALE = ONE / GAM
C
X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
XNORM = ABS( X( 1, 1 ) )
RETURN
C
C 1-by-2:
C ISGN*TL11*[X11 X12]*op[TR11 TR12] = [B11 B12].
C [TR21 TR22]
C
20 CONTINUE
C
SMIN = MAX( MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
$ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
$ *ABS( TL( 1, 1 ) )*EPS,
$ SMLNUM )
TMP( 1 ) = SGN*TL( 1, 1 )*TR( 1, 1 ) - ONE
TMP( 4 ) = SGN*TL( 1, 1 )*TR( 2, 2 ) - ONE
IF( LTRANR ) THEN
TMP( 2 ) = SGN*TL( 1, 1 )*TR( 2, 1 )
TMP( 3 ) = SGN*TL( 1, 1 )*TR( 1, 2 )
ELSE
TMP( 2 ) = SGN*TL( 1, 1 )*TR( 1, 2 )
TMP( 3 ) = SGN*TL( 1, 1 )*TR( 2, 1 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 1, 2 )
GO TO 40
C
C 2-by-1:
C ISGN*op[TL11 TL12]*[X11]*TR11 = [B11].
C [TL21 TL22] [X21] [B21]
C
30 CONTINUE
SMIN = MAX( MAX( ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
$ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
$ *ABS( TR( 1, 1 ) )*EPS,
$ SMLNUM )
TMP( 1 ) = SGN*TL( 1, 1 )*TR( 1, 1 ) - ONE
TMP( 4 ) = SGN*TL( 2, 2 )*TR( 1, 1 ) - ONE
IF( LTRANL ) THEN
TMP( 2 ) = SGN*TL( 1, 2 )*TR( 1, 1 )
TMP( 3 ) = SGN*TL( 2, 1 )*TR( 1, 1 )
ELSE
TMP( 2 ) = SGN*TL( 2, 1 )*TR( 1, 1 )
TMP( 3 ) = SGN*TL( 1, 2 )*TR( 1, 1 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 2, 1 )
40 CONTINUE
C
C Solve 2-by-2 system using complete pivoting.
C Set pivots less than SMIN to SMIN.
C
IPIV = IDAMAX( 4, TMP, 1 )
U11 = TMP( IPIV )
IF( ABS( U11 ).LE.SMIN ) THEN
INFO = 1
U11 = SMIN
END IF
U12 = TMP( LOCU12( IPIV ) )
L21 = TMP( LOCL21( IPIV ) ) / U11
U22 = TMP( LOCU22( IPIV ) ) - U12*L21
XSWAP = XSWPIV( IPIV )
BSWAP = BSWPIV( IPIV )
IF( ABS( U22 ).LE.SMIN ) THEN
INFO = 1
U22 = SMIN
END IF
IF( BSWAP ) THEN
TEMP = BTMP( 2 )
BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
BTMP( 1 ) = TEMP
ELSE
BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
END IF
IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
$ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
END IF
X2( 2 ) = BTMP( 2 ) / U22
X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
IF( XSWAP ) THEN
TEMP = X2( 2 )
X2( 2 ) = X2( 1 )
X2( 1 ) = TEMP
END IF
X( 1, 1 ) = X2( 1 )
IF( N1.EQ.1 ) THEN
X( 1, 2 ) = X2( 2 )
XNORM = ABS( X2( 1 ) ) + ABS( X2( 2 ) )
ELSE
X( 2, 1 ) = X2( 2 )
XNORM = MAX( ABS( X2( 1 ) ), ABS( X2( 2 ) ) )
END IF
RETURN
C
C 2-by-2:
C ISGN*op[TL11 TL12]*[X11 X12]*op[TR11 TR12]-[X11 X12] = [B11 B12].
C [TL21 TL22] [X21 X22] [TR21 TR22] [X21 X22] [B21 B22]
C
C Solve equivalent 4-by-4 system using complete pivoting.
C Set pivots less than SMIN to SMIN.
C
50 CONTINUE
SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
$ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
SMIN = MAX( ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
$ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )*SMIN
SMIN = MAX( EPS*SMIN, SMLNUM )
T16( 1, 1 ) = SGN*TL( 1, 1 )*TR( 1, 1 ) - ONE
T16( 2, 2 ) = SGN*TL( 2, 2 )*TR( 1, 1 ) - ONE
T16( 3, 3 ) = SGN*TL( 1, 1 )*TR( 2, 2 ) - ONE
T16( 4, 4 ) = SGN*TL( 2, 2 )*TR( 2, 2 ) - ONE
IF( LTRANL ) THEN
T16( 1, 2 ) = SGN*TL( 2, 1 )*TR( 1, 1 )
T16( 2, 1 ) = SGN*TL( 1, 2 )*TR( 1, 1 )
T16( 3, 4 ) = SGN*TL( 2, 1 )*TR( 2, 2 )
T16( 4, 3 ) = SGN*TL( 1, 2 )*TR( 2, 2 )
ELSE
T16( 1, 2 ) = SGN*TL( 1, 2 )*TR( 1, 1 )
T16( 2, 1 ) = SGN*TL( 2, 1 )*TR( 1, 1 )
T16( 3, 4 ) = SGN*TL( 1, 2 )*TR( 2, 2 )
T16( 4, 3 ) = SGN*TL( 2, 1 )*TR( 2, 2 )
END IF
IF( LTRANR ) THEN
T16( 1, 3 ) = SGN*TL( 1, 1 )*TR( 1, 2 )
T16( 2, 4 ) = SGN*TL( 2, 2 )*TR( 1, 2 )
T16( 3, 1 ) = SGN*TL( 1, 1 )*TR( 2, 1 )
T16( 4, 2 ) = SGN*TL( 2, 2 )*TR( 2, 1 )
ELSE
T16( 1, 3 ) = SGN*TL( 1, 1 )*TR( 2, 1 )
T16( 2, 4 ) = SGN*TL( 2, 2 )*TR( 2, 1 )
T16( 3, 1 ) = SGN*TL( 1, 1 )*TR( 1, 2 )
T16( 4, 2 ) = SGN*TL( 2, 2 )*TR( 1, 2 )
END IF
IF( LTRANL .AND. LTRANR ) THEN
T16( 1, 4 ) = SGN*TL( 2, 1 )*TR( 1, 2 )
T16( 2, 3 ) = SGN*TL( 1, 2 )*TR( 1, 2 )
T16( 3, 2 ) = SGN*TL( 2, 1 )*TR( 2, 1 )
T16( 4, 1 ) = SGN*TL( 1, 2 )*TR( 2, 1 )
ELSE IF( LTRANL .AND. .NOT.LTRANR ) THEN
T16( 1, 4 ) = SGN*TL( 2, 1 )*TR( 2, 1 )
T16( 2, 3 ) = SGN*TL( 1, 2 )*TR( 2, 1 )
T16( 3, 2 ) = SGN*TL( 2, 1 )*TR( 1, 2 )
T16( 4, 1 ) = SGN*TL( 1, 2 )*TR( 1, 2 )
ELSE IF( .NOT.LTRANL .AND. LTRANR ) THEN
T16( 1, 4 ) = SGN*TL( 1, 2 )*TR( 1, 2 )
T16( 2, 3 ) = SGN*TL( 2, 1 )*TR( 1, 2 )
T16( 3, 2 ) = SGN*TL( 1, 2 )*TR( 2, 1 )
T16( 4, 1 ) = SGN*TL( 2, 1 )*TR( 2, 1 )
ELSE
T16( 1, 4 ) = SGN*TL( 1, 2 )*TR( 2, 1 )
T16( 2, 3 ) = SGN*TL( 2, 1 )*TR( 2, 1 )
T16( 3, 2 ) = SGN*TL( 1, 2 )*TR( 1, 2 )
T16( 4, 1 ) = SGN*TL( 2, 1 )*TR( 1, 2 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 2, 1 )
BTMP( 3 ) = B( 1, 2 )
BTMP( 4 ) = B( 2, 2 )
C
C Perform elimination
C
DO 100 I = 1, 3
XMAX = ZERO
C
DO 70 IP = I, 4
C
DO 60 JP = I, 4
IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
XMAX = ABS( T16( IP, JP ) )
IPSV = IP
JPSV = JP
END IF
60 CONTINUE
C
70 CONTINUE
C
IF( IPSV.NE.I ) THEN
CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
TEMP = BTMP( I )
BTMP( I ) = BTMP( IPSV )
BTMP( IPSV ) = TEMP
END IF
IF( JPSV.NE.I )
$ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
JPIV( I ) = JPSV
IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
INFO = 1
T16( I, I ) = SMIN
END IF
C
DO 90 J = I + 1, 4
T16( J, I ) = T16( J, I ) / T16( I, I )
BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
C
DO 80 K = I + 1, 4
T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
80 CONTINUE
C
90 CONTINUE
C
100 CONTINUE
C
IF( ABS( T16( 4, 4 ) ).LT.SMIN )
$ T16( 4, 4 ) = SMIN
IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
$ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ),
$ ABS( BTMP( 4 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
BTMP( 3 ) = BTMP( 3 )*SCALE
BTMP( 4 ) = BTMP( 4 )*SCALE
END IF
C
DO 120 I = 1, 4
K = 5 - I
TEMP = ONE / T16( K, K )
TMP( K ) = BTMP( K )*TEMP
C
DO 110 J = K + 1, 4
TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
110 CONTINUE
C
120 CONTINUE
C
DO 130 I = 1, 3
IF( JPIV( 4-I ).NE.4-I ) THEN
TEMP = TMP( 4-I )
TMP( 4-I ) = TMP( JPIV( 4-I ) )
TMP( JPIV( 4-I ) ) = TEMP
END IF
130 CONTINUE
C
X( 1, 1 ) = TMP( 1 )
X( 2, 1 ) = TMP( 2 )
X( 1, 2 ) = TMP( 3 )
X( 2, 2 ) = TMP( 4 )
XNORM = MAX( ABS( TMP( 1 ) ) + ABS( TMP( 3 ) ),
$ ABS( TMP( 2 ) ) + ABS( TMP( 4 ) ) )
C
RETURN
C *** Last line of SB03MU ***
END
|