1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
SUBROUTINE SB03MV( LTRAN, LUPPER, T, LDT, B, LDB, SCALE, X, LDX,
$ XNORM, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for the 2-by-2 symmetric matrix X in
C
C op(T)'*X*op(T) - X = SCALE*B,
C
C where T is 2-by-2, B is symmetric 2-by-2, and op(T) = T or T',
C where T' denotes the transpose of T.
C
C ARGUMENTS
C
C Mode Parameters
C
C LTRAN LOGICAL
C Specifies the form of op(T) to be used, as follows:
C = .FALSE.: op(T) = T,
C = .TRUE. : op(T) = T'.
C
C LUPPER LOGICAL
C Specifies which triangle of the matrix B is used, and
C which triangle of the matrix X is computed, as follows:
C = .TRUE. : The upper triangular part;
C = .FALSE.: The lower triangular part.
C
C Input/Output Parameters
C
C T (input) DOUBLE PRECISION array, dimension (LDT,2)
C The leading 2-by-2 part of this array must contain the
C matrix T.
C
C LDT INTEGER
C The leading dimension of array T. LDT >= 2.
C
C B (input) DOUBLE PRECISION array, dimension (LDB,2)
C On entry with LUPPER = .TRUE., the leading 2-by-2 upper
C triangular part of this array must contain the upper
C triangular part of the symmetric matrix B and the strictly
C lower triangular part of B is not referenced.
C On entry with LUPPER = .FALSE., the leading 2-by-2 lower
C triangular part of this array must contain the lower
C triangular part of the symmetric matrix B and the strictly
C upper triangular part of B is not referenced.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= 2.
C
C SCALE (output) DOUBLE PRECISION
C The scale factor. SCALE is chosen less than or equal to 1
C to prevent the solution overflowing.
C
C X (output) DOUBLE PRECISION array, dimension (LDX,2)
C On exit with LUPPER = .TRUE., the leading 2-by-2 upper
C triangular part of this array contains the upper
C triangular part of the symmetric solution matrix X and the
C strictly lower triangular part of X is not referenced.
C On exit with LUPPER = .FALSE., the leading 2-by-2 lower
C triangular part of this array contains the lower
C triangular part of the symmetric solution matrix X and the
C strictly upper triangular part of X is not referenced.
C Note that X may be identified with B in the calling
C statement.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= 2.
C
C XNORM (output) DOUBLE PRECISION
C The infinity-norm of the solution.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if T has almost reciprocal eigenvalues, so T
C is perturbed to get a nonsingular equation.
C
C NOTE: In the interests of speed, this routine does not
C check the inputs for errors.
C
C METHOD
C
C The equivalent linear algebraic system of equations is formed and
C solved using Gaussian elimination with complete pivoting.
C
C REFERENCES
C
C [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., and Sorensen, D.
C LAPACK Users' Guide: Second Edition.
C SIAM, Philadelphia, 1995.
C
C NUMERICAL ASPECTS
C
C The algorithm is stable and reliable, since Gaussian elimination
C with complete pivoting is used.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, May 1997.
C Based on DLALD2 by P. Petkov, Tech. University of Sofia, September
C 1993.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Discrete-time system, Lyapunov equation, matrix algebra.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, FOUR
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ FOUR = 4.0D+0 )
C ..
C .. Scalar Arguments ..
LOGICAL LTRAN, LUPPER
INTEGER INFO, LDB, LDT, LDX
DOUBLE PRECISION SCALE, XNORM
C ..
C .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), T( LDT, * ), X( LDX, * )
C ..
C .. Local Scalars ..
INTEGER I, IP, IPSV, J, JP, JPSV, K
DOUBLE PRECISION EPS, SMIN, SMLNUM, TEMP, XMAX
C ..
C .. Local Arrays ..
INTEGER JPIV( 3 )
DOUBLE PRECISION BTMP( 3 ), T9( 3, 3 ), TMP( 3 )
C ..
C .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
C ..
C .. External Subroutines ..
EXTERNAL DSWAP
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX
C ..
C .. Executable Statements ..
C
C Do not check the input parameters for errors.
C
INFO = 0
C
C Set constants to control overflow.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
C
C Solve equivalent 3-by-3 system using complete pivoting.
C Set pivots less than SMIN to SMIN.
C
SMIN = MAX( ABS( T( 1, 1 ) ), ABS( T( 1, 2 ) ),
$ ABS( T( 2, 1 ) ), ABS( T( 2, 2 ) ) )
SMIN = MAX( EPS*SMIN, SMLNUM )
T9( 1, 1 ) = T( 1, 1 )*T( 1, 1 ) - ONE
T9( 2, 2 ) = T( 1, 1 )*T( 2, 2 ) + T( 1, 2 )*T( 2, 1 ) - ONE
T9( 3, 3 ) = T( 2, 2 )*T( 2, 2 ) - ONE
IF( LTRAN ) THEN
T9( 1, 2 ) = T( 1, 1 )*T( 1, 2 ) + T( 1, 1 )*T( 1, 2 )
T9( 1, 3 ) = T( 1, 2 )*T( 1, 2 )
T9( 2, 1 ) = T( 1, 1 )*T( 2, 1 )
T9( 2, 3 ) = T( 1, 2 )*T( 2, 2 )
T9( 3, 1 ) = T( 2, 1 )*T( 2, 1 )
T9( 3, 2 ) = T( 2, 1 )*T( 2, 2 ) + T( 2, 1 )*T( 2, 2 )
ELSE
T9( 1, 2 ) = T( 1, 1 )*T( 2, 1 ) + T( 1, 1 )*T( 2, 1 )
T9( 1, 3 ) = T( 2, 1 )*T( 2, 1 )
T9( 2, 1 ) = T( 1, 1 )*T( 1, 2 )
T9( 2, 3 ) = T( 2, 1 )*T( 2, 2 )
T9( 3, 1 ) = T( 1, 2 )*T( 1, 2 )
T9( 3, 2 ) = T( 1, 2 )*T( 2, 2 ) + T( 1, 2 )*T( 2, 2 )
END IF
BTMP( 1 ) = B( 1, 1 )
IF ( LUPPER ) THEN
BTMP( 2 ) = B( 1, 2 )
ELSE
BTMP( 2 ) = B( 2, 1 )
END IF
BTMP( 3 ) = B( 2, 2 )
C
C Perform elimination.
C
DO 50 I = 1, 2
XMAX = ZERO
C
DO 20 IP = I, 3
C
DO 10 JP = I, 3
IF( ABS( T9( IP, JP ) ).GE.XMAX ) THEN
XMAX = ABS( T9( IP, JP ) )
IPSV = IP
JPSV = JP
END IF
10 CONTINUE
C
20 CONTINUE
C
IF( IPSV.NE.I ) THEN
CALL DSWAP( 3, T9( IPSV, 1 ), 3, T9( I, 1 ), 3 )
TEMP = BTMP( I )
BTMP( I ) = BTMP( IPSV )
BTMP( IPSV ) = TEMP
END IF
IF( JPSV.NE.I )
$ CALL DSWAP( 3, T9( 1, JPSV ), 1, T9( 1, I ), 1 )
JPIV( I ) = JPSV
IF( ABS( T9( I, I ) ).LT.SMIN ) THEN
INFO = 1
T9( I, I ) = SMIN
END IF
C
DO 40 J = I + 1, 3
T9( J, I ) = T9( J, I ) / T9( I, I )
BTMP( J ) = BTMP( J ) - T9( J, I )*BTMP( I )
C
DO 30 K = I + 1, 3
T9( J, K ) = T9( J, K ) - T9( J, I )*T9( I, K )
30 CONTINUE
C
40 CONTINUE
C
50 CONTINUE
C
IF( ABS( T9( 3, 3 ) ).LT.SMIN )
$ T9( 3, 3 ) = SMIN
SCALE = ONE
IF( ( FOUR*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T9( 1, 1 ) ) .OR.
$ ( FOUR*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T9( 2, 2 ) ) .OR.
$ ( FOUR*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T9( 3, 3 ) ) ) THEN
SCALE = ( ONE / FOUR ) / MAX( ABS( BTMP( 1 ) ),
$ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
BTMP( 3 ) = BTMP( 3 )*SCALE
END IF
C
DO 70 I = 1, 3
K = 4 - I
TEMP = ONE / T9( K, K )
TMP( K ) = BTMP( K )*TEMP
C
DO 60 J = K + 1, 3
TMP( K ) = TMP( K ) - ( TEMP*T9( K, J ) )*TMP( J )
60 CONTINUE
C
70 CONTINUE
C
DO 80 I = 1, 2
IF( JPIV( 3-I ).NE.3-I ) THEN
TEMP = TMP( 3-I )
TMP( 3-I ) = TMP( JPIV( 3-I ) )
TMP( JPIV( 3-I ) ) = TEMP
END IF
80 CONTINUE
C
X( 1, 1 ) = TMP( 1 )
IF ( LUPPER ) THEN
X( 1, 2 ) = TMP( 2 )
ELSE
X( 2, 1 ) = TMP( 2 )
END IF
X( 2, 2 ) = TMP( 3 )
XNORM = MAX( ABS( TMP( 1 ) ) + ABS( TMP( 2 ) ),
$ ABS( TMP( 2 ) ) + ABS( TMP( 3 ) ) )
C
RETURN
C *** Last line of SB03MV ***
END
|