1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
SUBROUTINE SB03OD( DICO, FACT, TRANS, N, M, A, LDA, Q, LDQ, B,
$ LDB, SCALE, WR, WI, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X = op(U)'*op(U) either the stable non-negative
C definite continuous-time Lyapunov equation
C 2
C op(A)'*X + X*op(A) = -scale *op(B)'*op(B) (1)
C
C or the convergent non-negative definite discrete-time Lyapunov
C equation
C 2
C op(A)'*X*op(A) - X = -scale *op(B)'*op(B) (2)
C
C where op(K) = K or K' (i.e., the transpose of the matrix K), A is
C an N-by-N matrix, op(B) is an M-by-N matrix, U is an upper
C triangular matrix containing the Cholesky factor of the solution
C matrix X, X = op(U)'*op(U), and scale is an output scale factor,
C set less than or equal to 1 to avoid overflow in X. If matrix B
C has full rank then the solution matrix X will be positive-definite
C and hence the Cholesky factor U will be nonsingular, but if B is
C rank deficient then X may be only positive semi-definite and U
C will be singular.
C
C In the case of equation (1) the matrix A must be stable (that
C is, all the eigenvalues of A must have negative real parts),
C and for equation (2) the matrix A must be convergent (that is,
C all the eigenvalues of A must lie inside the unit circle).
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of Lyapunov equation to be solved as
C follows:
C = 'C': Equation (1), continuous-time case;
C = 'D': Equation (2), discrete-time case.
C
C FACT CHARACTER*1
C Specifies whether or not the real Schur factorization
C of the matrix A is supplied on entry, as follows:
C = 'F': On entry, A and Q contain the factors from the
C real Schur factorization of the matrix A;
C = 'N': The Schur factorization of A will be computed
C and the factors will be stored in A and Q.
C
C TRANS CHARACTER*1
C Specifies the form of op(K) to be used, as follows:
C = 'N': op(K) = K (No transpose);
C = 'T': op(K) = K**T (Transpose).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A and the number of columns in
C matrix op(B). N >= 0.
C
C M (input) INTEGER
C The number of rows in matrix op(B). M >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A. If FACT = 'F', then A contains
C an upper quasi-triangular matrix S in Schur canonical
C form; the elements below the upper Hessenberg part of the
C array A are not referenced.
C On exit, the leading N-by-N upper Hessenberg part of this
C array contains the upper quasi-triangular matrix S in
C Schur canonical form from the Shur factorization of A.
C The contents of array A is not modified if FACT = 'F'.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C Q (input or output) DOUBLE PRECISION array, dimension
C (LDQ,N)
C On entry, if FACT = 'F', then the leading N-by-N part of
C this array must contain the orthogonal matrix Q of the
C Schur factorization of A.
C Otherwise, Q need not be set on entry.
C On exit, the leading N-by-N part of this array contains
C the orthogonal matrix Q of the Schur factorization of A.
C The contents of array Q is not modified if FACT = 'F'.
C
C LDQ INTEGER
C The leading dimension of array Q. LDQ >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C if TRANS = 'N', and dimension (LDB,max(M,N)), if
C TRANS = 'T'.
C On entry, if TRANS = 'N', the leading M-by-N part of this
C array must contain the coefficient matrix B of the
C equation.
C On entry, if TRANS = 'T', the leading N-by-M part of this
C array must contain the coefficient matrix B of the
C equation.
C On exit, the leading N-by-N part of this array contains
C the upper triangular Cholesky factor U of the solution
C matrix X of the problem, X = op(U)'*op(U).
C If M = 0 and N > 0, then U is set to zero.
C
C LDB INTEGER
C The leading dimension of array B.
C LDB >= MAX(1,N,M), if TRANS = 'N';
C LDB >= MAX(1,N), if TRANS = 'T'.
C
C SCALE (output) DOUBLE PRECISION
C The scale factor, scale, set less than or equal to 1 to
C prevent the solution overflowing.
C
C WR (output) DOUBLE PRECISION array, dimension (N)
C WI (output) DOUBLE PRECISION array, dimension (N)
C If FACT = 'N', and INFO >= 0 and INFO <= 2, WR and WI
C contain the real and imaginary parts, respectively, of
C the eigenvalues of A.
C If FACT = 'F', WR and WI are not referenced.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, or INFO = 1, DWORK(1) returns the
C optimal value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C If M > 0, LDWORK >= MAX(1,4*N + MIN(M,N));
C If M = 0, LDWORK >= 1.
C For optimum performance LDWORK should sometimes be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the Lyapunov equation is (nearly) singular
C (warning indicator);
C if DICO = 'C' this means that while the matrix A
C (or the factor S) has computed eigenvalues with
C negative real parts, it is only just stable in the
C sense that small perturbations in A can make one or
C more of the eigenvalues have a non-negative real
C part;
C if DICO = 'D' this means that while the matrix A
C (or the factor S) has computed eigenvalues inside
C the unit circle, it is nevertheless only just
C convergent, in the sense that small perturbations
C in A can make one or more of the eigenvalues lie
C outside the unit circle;
C perturbed values were used to solve the equation;
C = 2: if FACT = 'N' and DICO = 'C', but the matrix A is
C not stable (that is, one or more of the eigenvalues
C of A has a non-negative real part), or DICO = 'D',
C but the matrix A is not convergent (that is, one or
C more of the eigenvalues of A lies outside the unit
C circle); however, A will still have been factored
C and the eigenvalues of A returned in WR and WI.
C = 3: if FACT = 'F' and DICO = 'C', but the Schur factor S
C supplied in the array A is not stable (that is, one
C or more of the eigenvalues of S has a non-negative
C real part), or DICO = 'D', but the Schur factor S
C supplied in the array A is not convergent (that is,
C one or more of the eigenvalues of S lies outside the
C unit circle);
C = 4: if FACT = 'F' and the Schur factor S supplied in
C the array A has two or more consecutive non-zero
C elements on the first sub-diagonal, so that there is
C a block larger than 2-by-2 on the diagonal;
C = 5: if FACT = 'F' and the Schur factor S supplied in
C the array A has a 2-by-2 diagonal block with real
C eigenvalues instead of a complex conjugate pair;
C = 6: if FACT = 'N' and the LAPACK Library routine DGEES
C has failed to converge. This failure is not likely
C to occur. The matrix B will be unaltered but A will
C be destroyed.
C
C METHOD
C
C The method used by the routine is based on the Bartels and Stewart
C method [1], except that it finds the upper triangular matrix U
C directly without first finding X and without the need to form the
C normal matrix op(B)'*op(B).
C
C The Schur factorization of a square matrix A is given by
C
C A = QSQ',
C
C where Q is orthogonal and S is an N-by-N block upper triangular
C matrix with 1-by-1 and 2-by-2 blocks on its diagonal (which
C correspond to the eigenvalues of A). If A has already been
C factored prior to calling the routine however, then the factors
C Q and S may be supplied and the initial factorization omitted.
C
C If TRANS = 'N', the matrix B is factored as (QR factorization)
C _ _ _ _ _
C B = P ( R ), M >= N, B = P ( R Z ), M < N,
C ( 0 )
C _ _
C where P is an M-by-M orthogonal matrix and R is a square upper
C _ _ _ _ _
C triangular matrix. Then, the matrix B = RQ, or B = ( R Z )Q (if
C M < N) is factored as
C _ _
C B = P ( R ), M >= N, B = P ( R Z ), M < N.
C
C If TRANS = 'T', the matrix B is factored as (RQ factorization)
C _
C _ _ ( Z ) _
C B = ( 0 R ) P, M >= N, B = ( _ ) P, M < N,
C ( R )
C _ _
C where P is an M-by-M orthogonal matrix and R is a square upper
C _ _ _ _ _
C triangular matrix. Then, the matrix B = Q'R, or B = Q'( Z' R' )'
C (if M < N) is factored as
C _ _
C B = ( R ) P, M >= N, B = ( Z ) P, M < N.
C ( R )
C
C These factorizations are utilised to either transform the
C continuous-time Lyapunov equation to the canonical form
C 2
C op(S)'*op(V)'*op(V) + op(V)'*op(V)*op(S) = -scale *op(F)'*op(F),
C
C or the discrete-time Lyapunov equation to the canonical form
C 2
C op(S)'*op(V)'*op(V)*op(S) - op(V)'*op(V) = -scale *op(F)'*op(F),
C
C where V and F are upper triangular, and
C
C F = R, M >= N, F = ( R Z ), M < N, if TRANS = 'N';
C ( 0 0 )
C
C F = R, M >= N, F = ( 0 Z ), M < N, if TRANS = 'T'.
C ( 0 R )
C
C The transformed equation is then solved for V, from which U is
C obtained via the QR factorization of V*Q', if TRANS = 'N', or
C via the RQ factorization of Q*V, if TRANS = 'T'.
C
C REFERENCES
C
C [1] Bartels, R.H. and Stewart, G.W.
C Solution of the matrix equation A'X + XB = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Hammarling, S.J.
C Numerical solution of the stable, non-negative definite
C Lyapunov equation.
C IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations and is backward stable.
C
C FURTHER COMMENTS
C
C The Lyapunov equation may be very ill-conditioned. In particular,
C if A is only just stable (or convergent) then the Lyapunov
C equation will be ill-conditioned. A symptom of ill-conditioning
C is "large" elements in U relative to those of A and B, or a
C "small" value for scale. A condition estimate can be computed
C using SLICOT Library routine SB03MD.
C
C SB03OD routine can be also used for solving "unstable" Lyapunov
C equations, i.e., when matrix A has all eigenvalues with positive
C real parts, if DICO = 'C', or with moduli greater than one,
C if DICO = 'D'. Specifically, one may solve for X = op(U)'*op(U)
C either the continuous-time Lyapunov equation
C 2
C op(A)'*X + X*op(A) = scale *op(B)'*op(B), (3)
C
C or the discrete-time Lyapunov equation
C 2
C op(A)'*X*op(A) - X = scale *op(B)'*op(B), (4)
C
C provided, for equation (3), the given matrix A is replaced by -A,
C or, for equation (4), the given matrices A and B are replaced by
C inv(A) and B*inv(A), if TRANS = 'N' (or inv(A)*B, if TRANS = 'T'),
C respectively. Although the inversion generally can rise numerical
C problems, in case of equation (4) it is expected that the matrix A
C is enough well-conditioned, having only eigenvalues with moduli
C greater than 1. However, if A is ill-conditioned, it could be
C preferable to use the more general SLICOT Lyapunov solver SB03MD.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C Supersedes Release 2.0 routine SB03CD by Sven Hammarling,
C NAG Ltd, United Kingdom.
C
C REVISIONS
C
C Dec. 1997, April 1998, May 1998, May 1999, Oct. 2001 (V. Sima).
C March 2002 (A. Varga).
C
C KEYWORDS
C
C Lyapunov equation, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, TRANS
INTEGER INFO, LDA, LDB, LDQ, LDWORK, M, N
DOUBLE PRECISION SCALE
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), Q(LDQ,*), WI(*),
$ WR(*)
C .. Local Scalars ..
LOGICAL CONT, LTRANS, NOFACT
INTEGER I, IFAIL, INFORM, ITAU, J, JWORK, K, L, MINMN,
$ NE, SDIM, WRKOPT
DOUBLE PRECISION EMAX, TEMP
C .. Local Arrays ..
LOGICAL BWORK(1)
C .. External Functions ..
LOGICAL LSAME, SELECT
DOUBLE PRECISION DLAPY2
EXTERNAL DLAPY2, LSAME, SELECT
C .. External Subroutines ..
EXTERNAL DCOPY, DGEES, DGEMM, DGEMV, DGEQRF, DGERQF,
$ DLACPY, DLASET, DTRMM, SB03OU, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
CONT = LSAME( DICO, 'C' )
NOFACT = LSAME( FACT, 'N' )
LTRANS = LSAME( TRANS, 'T' )
MINMN = MIN( M, N )
C
INFO = 0
IF( .NOT.CONT .AND. .NOT.LSAME( DICO, 'D' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
INFO = -2
ELSE IF( .NOT.LTRANS .AND. .NOT.LSAME( TRANS, 'N' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( ( LDB.LT.MAX( 1, N ) ) .OR.
$ ( LDB.LT.MAX( 1, N, M ) .AND. .NOT.LTRANS ) ) THEN
INFO = -11
ELSE IF( LDWORK.LT.1 .OR. ( M.GT.0 .AND. LDWORK.LT.4*N + MINMN ) )
$ THEN
INFO = -16
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB03OD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MINMN.EQ.0 ) THEN
IF( M.EQ.0 )
$ CALL DLASET( 'Full', N, N, ZERO, ZERO, B, LDB )
SCALE = ONE
DWORK(1) = ONE
RETURN
END IF
C
C Start the solution.
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
IF ( NOFACT ) THEN
C
C Find the Schur factorization of A, A = Q*S*Q'.
C Workspace: need 3*N;
C prefer larger.
C
CALL DGEES( 'Vectors', 'Not ordered', SELECT, N, A, LDA, SDIM,
$ WR, WI, Q, LDQ, DWORK, LDWORK, BWORK, INFORM )
IF ( INFORM.NE.0 ) THEN
INFO = 6
RETURN
END IF
WRKOPT = DWORK(1)
C
C Check the eigenvalues for stability.
C
IF ( CONT ) THEN
EMAX = WR(1)
C
DO 20 J = 2, N
IF ( WR(J).GT.EMAX )
$ EMAX = WR(J)
20 CONTINUE
C
ELSE
EMAX = DLAPY2( WR(1), WI(1) )
C
DO 40 J = 2, N
TEMP = DLAPY2( WR(J), WI(J) )
IF ( TEMP.GT.EMAX )
$ EMAX = TEMP
40 CONTINUE
C
END IF
C
IF ( ( CONT ) .AND. ( EMAX.GE.ZERO ) .OR.
$ ( .NOT.CONT ) .AND. ( EMAX.GE.ONE ) ) THEN
INFO = 2
RETURN
END IF
ELSE
WRKOPT = 0
END IF
C
C Perform the QR or RQ factorization of B,
C _ _ _ _ _
C B = P ( R ), or B = P ( R Z ), if TRANS = 'N', or
C ( 0 )
C _
C _ _ ( Z ) _
C B = ( 0 R ) P, or B = ( _ ) P, if TRANS = 'T'.
C ( R )
C Workspace: need MIN(M,N) + N;
C prefer MIN(M,N) + N*NB.
C
ITAU = 1
JWORK = ITAU + MINMN
IF ( LTRANS ) THEN
CALL DGERQF( N, M, B, LDB, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IFAIL )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1, MINMN*N)
JWORK = ITAU
C
C Form in B
C _ _ _ _ _ _
C B := Q'R, m >= n, B := Q'*( Z' R' )', m < n, with B an
C n-by-min(m,n) matrix.
C Use a BLAS 3 operation if enough workspace, and BLAS 2,
C _
C otherwise: B is formed column by column.
C
IF ( LDWORK.GE.JWORK+MINMN*N-1 ) THEN
K = JWORK
C
DO 60 I = 1, MINMN
CALL DCOPY( N, Q(N-MINMN+I,1), LDQ, DWORK(K), 1 )
K = K + N
60 CONTINUE
C
CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Non-unit',
$ N, MINMN, ONE, B(N-MINMN+1,M-MINMN+1), LDB,
$ DWORK(JWORK), N )
IF ( M.LT.N )
$ CALL DGEMM( 'Transpose', 'No transpose', N, M, N-M,
$ ONE, Q, LDQ, B, LDB, ONE, DWORK(JWORK), N )
CALL DLACPY( 'Full', N, MINMN, DWORK(JWORK), N, B, LDB )
ELSE
NE = N - MINMN
C
DO 80 J = 1, MINMN
NE = NE + 1
CALL DCOPY( NE, B(1,M-MINMN+J), 1, DWORK(JWORK), 1 )
CALL DGEMV( 'Transpose', NE, N, ONE, Q, LDQ,
$ DWORK(JWORK), 1, ZERO, B(1,J), 1 )
80 CONTINUE
C
END IF
ELSE
CALL DGEQRF( M, N, B, LDB, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IFAIL )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1, MINMN*N)
JWORK = ITAU
C
C Form in B
C _ _ _ _ _ _
C B := RQ, m >= n, B := ( R Z )*Q, m < n, with B an
C min(m,n)-by-n matrix.
C Use a BLAS 3 operation if enough workspace, and BLAS 2,
C _
C otherwise: B is formed row by row.
C
IF ( LDWORK.GE.JWORK+MINMN*N-1 ) THEN
CALL DLACPY( 'Full', MINMN, N, Q, LDQ, DWORK(JWORK), MINMN )
CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non-unit',
$ MINMN, N, ONE, B, LDB, DWORK(JWORK), MINMN )
IF ( M.LT.N )
$ CALL DGEMM( 'No transpose', 'No transpose', M, N, N-M,
$ ONE, B(1,M+1), LDB, Q(M+1,1), LDQ, ONE,
$ DWORK(JWORK), MINMN )
CALL DLACPY( 'Full', MINMN, N, DWORK(JWORK), MINMN, B, LDB )
ELSE
NE = MINMN + MAX( 0, N-M )
C
DO 100 J = 1, MINMN
CALL DCOPY( NE, B(J,J), LDB, DWORK(JWORK), 1 )
CALL DGEMV( 'Transpose', NE, N, ONE, Q(J,1), LDQ,
$ DWORK(JWORK), 1, ZERO, B(J,1), LDB )
NE = NE - 1
100 CONTINUE
C
END IF
END IF
JWORK = ITAU + MINMN
C
C Solve for U the transformed Lyapunov equation
C 2 _ _
C op(S)'*op(U)'*op(U) + op(U)'*op(U)*op(S) = -scale *op(B)'*op(B),
C
C or
C 2 _ _
C op(S)'*op(U)'*op(U)*op(S) - op(U)'*op(U) = -scale *op(B)'*op(B)
C
C Workspace: need MIN(M,N) + 4*N;
C prefer larger.
C
CALL SB03OU( .NOT.CONT, LTRANS, N, MINMN, A, LDA, B, LDB,
$ DWORK(ITAU), B, LDB, SCALE, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
IF ( INFO.GT.1 ) THEN
INFO = INFO + 1
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
JWORK = ITAU
C
C Form U := U*Q' or U := Q*U in the array B.
C Use a BLAS 3 operation if enough workspace, and BLAS 2, otherwise.
C Workspace: need N;
C prefer N*N;
C
IF ( LDWORK.GE.JWORK+N*N-1 ) THEN
IF ( LTRANS ) THEN
CALL DLACPY( 'Full', N, N, Q, LDQ, DWORK(JWORK), N )
CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Non-unit', N,
$ N, ONE, B, LDB, DWORK(JWORK), N )
ELSE
K = JWORK
C
DO 120 I = 1, N
CALL DCOPY( N, Q(1,I), 1, DWORK(K), N )
K = K + 1
120 CONTINUE
C
CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
$ N, ONE, B, LDB, DWORK(JWORK), N )
END IF
CALL DLACPY( 'Full', N, N, DWORK(JWORK), N, B, LDB )
WRKOPT = MAX( WRKOPT, JWORK + N*N - 1 )
ELSE
IF ( LTRANS ) THEN
C
C U is formed column by column ( U := Q*U ).
C
DO 140 I = 1, N
CALL DCOPY( I, B(1,I), 1, DWORK(JWORK), 1 )
CALL DGEMV( 'No transpose', N, I, ONE, Q, LDQ,
$ DWORK(JWORK), 1, ZERO, B(1,I), 1 )
140 CONTINUE
ELSE
C
C U is formed row by row ( U' := Q*U' ).
C
DO 160 I = 1, N
CALL DCOPY( N-I+1, B(I,I), LDB, DWORK(JWORK), 1 )
CALL DGEMV( 'No transpose', N, N-I+1, ONE, Q(1,I), LDQ,
$ DWORK(JWORK), 1, ZERO, B(I,1), LDB )
160 CONTINUE
END IF
END IF
C
C Lastly find the QR or RQ factorization of U, overwriting on B,
C to give the required Cholesky factor.
C Workspace: need 2*N;
C prefer N + N*NB;
C
JWORK = ITAU + N
IF ( LTRANS ) THEN
CALL DGERQF( N, N, B, LDB, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IFAIL )
ELSE
CALL DGEQRF( N, N, B, LDB, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IFAIL )
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Make the diagonal elements of U non-negative.
C
IF ( LTRANS ) THEN
C
DO 200 J = 1, N
IF ( B(J,J).LT.ZERO ) THEN
C
DO 180 I = 1, J
B(I,J) = -B(I,J)
180 CONTINUE
C
END IF
200 CONTINUE
C
ELSE
K = JWORK
C
DO 240 J = 1, N
DWORK(K) = B(J,J)
L = JWORK
C
DO 220 I = 1, J
IF ( DWORK(L).LT.ZERO ) B(I,J) = -B(I,J)
L = L + 1
220 CONTINUE
C
K = K + 1
240 CONTINUE
END IF
C
IF( N.GT.1 )
$ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, B(2,1), LDB )
C
C Set the optimal workspace.
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of SB03OD ***
END
|