1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
|
SUBROUTINE SB03OT( DISCR, LTRANS, N, S, LDS, R, LDR, SCALE, DWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X = op(U)'*op(U) either the stable non-negative
C definite continuous-time Lyapunov equation
C 2
C op(S)'*X + X*op(S) = -scale *op(R)'*op(R) (1)
C
C or the convergent non-negative definite discrete-time Lyapunov
C equation
C 2
C op(S)'*X*op(S) - X = -scale *op(R)'*op(R) (2)
C
C where op(K) = K or K' (i.e., the transpose of the matrix K), S is
C an N-by-N block upper triangular matrix with one-by-one or
C two-by-two blocks on the diagonal, R is an N-by-N upper triangular
C matrix, and scale is an output scale factor, set less than or
C equal to 1 to avoid overflow in X.
C
C In the case of equation (1) the matrix S must be stable (that
C is, all the eigenvalues of S must have negative real parts),
C and for equation (2) the matrix S must be convergent (that is,
C all the eigenvalues of S must lie inside the unit circle).
C
C ARGUMENTS
C
C Mode Parameters
C
C DISCR LOGICAL
C Specifies the type of Lyapunov equation to be solved as
C follows:
C = .TRUE. : Equation (2), discrete-time case;
C = .FALSE.: Equation (1), continuous-time case.
C
C LTRANS LOGICAL
C Specifies the form of op(K) to be used, as follows:
C = .FALSE.: op(K) = K (No transpose);
C = .TRUE. : op(K) = K**T (Transpose).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices S and R. N >= 0.
C
C S (input) DOUBLE PRECISION array of dimension (LDS,N)
C The leading N-by-N upper Hessenberg part of this array
C must contain the block upper triangular matrix.
C The elements below the upper Hessenberg part of the array
C S are not referenced. The 2-by-2 blocks must only
C correspond to complex conjugate pairs of eigenvalues (not
C to real eigenvalues).
C
C LDS INTEGER
C The leading dimension of array S. LDS >= MAX(1,N).
C
C R (input/output) DOUBLE PRECISION array of dimension (LDR,N)
C On entry, the leading N-by-N upper triangular part of this
C array must contain the upper triangular matrix R.
C On exit, the leading N-by-N upper triangular part of this
C array contains the upper triangular matrix U.
C The strict lower triangle of R is not referenced.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,N).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor, scale, set less than or equal to 1 to
C prevent the solution overflowing.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (4*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the Lyapunov equation is (nearly) singular
C (warning indicator);
C if DISCR = .FALSE., this means that while the
C matrix S has computed eigenvalues with negative real
C parts, it is only just stable in the sense that
C small perturbations in S can make one or more of the
C eigenvalues have a non-negative real part;
C if DISCR = .TRUE., this means that while the
C matrix S has computed eigenvalues inside the unit
C circle, it is nevertheless only just convergent, in
C the sense that small perturbations in S can make one
C or more of the eigenvalues lie outside the unit
C circle;
C perturbed values were used to solve the equation
C (but the matrix S is unchanged);
C = 2: if the matrix S is not stable (that is, one or more
C of the eigenvalues of S has a non-negative real
C part), if DISCR = .FALSE., or not convergent (that
C is, one or more of the eigenvalues of S lies outside
C the unit circle), if DISCR = .TRUE.;
C = 3: if the matrix S has two or more consecutive non-zero
C elements on the first sub-diagonal, so that there is
C a block larger than 2-by-2 on the diagonal;
C = 4: if the matrix S has a 2-by-2 diagonal block with
C real eigenvalues instead of a complex conjugate
C pair.
C
C METHOD
C
C The method used by the routine is based on a variant of the
C Bartels and Stewart backward substitution method [1], that finds
C the Cholesky factor op(U) directly without first finding X and
C without the need to form the normal matrix op(R)'*op(R) [2].
C
C The continuous-time Lyapunov equation in the canonical form
C 2
C op(S)'*op(U)'*op(U) + op(U)'*op(U)*op(S) = -scale *op(R)'*op(R),
C
C or the discrete-time Lyapunov equation in the canonical form
C 2
C op(S)'*op(U)'*op(U)*op(S) - op(U)'*op(U) = -scale *op(R)'*op(R),
C
C where U and R are upper triangular, is solved for U.
C
C REFERENCES
C
C [1] Bartels, R.H. and Stewart, G.W.
C Solution of the matrix equation A'X + XB = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Hammarling, S.J.
C Numerical solution of the stable, non-negative definite
C Lyapunov equation.
C IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations and is backward stable.
C
C FURTHER COMMENTS
C
C The Lyapunov equation may be very ill-conditioned. In particular
C if S is only just stable (or convergent) then the Lyapunov
C equation will be ill-conditioned. "Large" elements in U relative
C to those of S and R, or a "small" value for scale, is a symptom
C of ill-conditioning. A condition estimate can be computed using
C SLICOT Library routine SB03MD.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, May 1997.
C Supersedes Release 2.0 routine SB03CZ by Sven Hammarling,
C NAG Ltd, United Kingdom, Oct. 1986.
C Partly based on SB03CZ and PLYAP1 by A. Varga, University of
C Bochum, May 1992.
C
C REVISIONS
C
C Dec. 1997, April 1998, May 1999, Feb. 2004.
C
C KEYWORDS
C
C Lyapunov equation, orthogonal transformation, real Schur form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C .. Scalar Arguments ..
LOGICAL DISCR, LTRANS
INTEGER INFO, LDR, LDS, N
DOUBLE PRECISION SCALE
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), R(LDR,*), S(LDS,*)
C .. Local Scalars ..
LOGICAL CONT, TBYT
INTEGER INFOM, ISGN, J, J1, J2, J3, K, K1, K2, K3,
$ KOUNT, KSIZE
DOUBLE PRECISION ABSSKK, ALPHA, BIGNUM, D1, D2, DR, EPS, SCALOC,
$ SMIN, SMLNUM, SUM, T1, T2, T3, T4, TAU1, TAU2,
$ TEMP, V1, V2, V3, V4
C .. Local Arrays ..
DOUBLE PRECISION A(2,2), B(2,2), U(2,2)
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANHS
EXTERNAL DLAMCH, DLANHS
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DLABAD, DLARFG, DSCAL, DSWAP,
$ DTRMM, DTRMV, MB04ND, MB04OD, SB03OR, SB03OY,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SIGN, SQRT
C .. Executable Statements ..
C
INFO = 0
C
C Test the input scalar arguments.
C
IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDR.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB03OT', -INFO )
RETURN
END IF
C
SCALE = ONE
C
C Quick return if possible.
C
IF (N.EQ.0)
$ RETURN
C
C Set constants to control overflow.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SMLNUM*DBLE( N*N ) / EPS
BIGNUM = ONE / SMLNUM
C
SMIN = MAX( SMLNUM, EPS*DLANHS( 'Max', N, S, LDS, DWORK ) )
INFOM = 0
C
C Start the solution. Most of the comments refer to notation and
C equations in sections 5 and 10 of the second reference above.
C
C Determine whether or not the current block is two-by-two.
C K gives the position of the start of the current block and
C TBYT is true if the block is two-by-two.
C
CONT = .NOT.DISCR
ISGN = 1
IF ( .NOT.LTRANS ) THEN
C
C Case op(M) = M.
C
KOUNT = 1
C
10 CONTINUE
C WHILE( KOUNT.LE.N )LOOP
IF ( KOUNT.LE.N ) THEN
K = KOUNT
IF ( KOUNT.GE.N ) THEN
TBYT = .FALSE.
KOUNT = KOUNT + 1
ELSE IF ( S(K+1,K).EQ.ZERO ) THEN
TBYT = .FALSE.
KOUNT = KOUNT + 1
ELSE
TBYT = .TRUE.
IF ( (K+1).LT.N ) THEN
IF ( S(K+2,K+1).NE.ZERO ) THEN
INFO = 3
RETURN
END IF
END IF
KOUNT = KOUNT + 2
END IF
IF ( TBYT ) THEN
C
C Solve the two-by-two Lyapunov equation (6.1) or (10.19),
C using the routine SB03OY.
C
B(1,1) = S(K,K)
B(2,1) = S(K+1,K)
B(1,2) = S(K,K+1)
B(2,2) = S(K+1,K+1)
U(1,1) = R(K,K)
U(1,2) = R(K,K+1)
U(2,2) = R(K+1,K+1)
C
CALL SB03OY( DISCR, LTRANS, ISGN, B, 2, U, 2, A, 2,
$ SCALOC, INFO )
IF ( INFO.GT.1 )
$ RETURN
INFOM = MAX( INFO, INFOM )
IF( SCALOC.NE.ONE ) THEN
C
DO 20 J = 1, N
CALL DSCAL( J, SCALOC, R(1,J), 1 )
20 CONTINUE
C
SCALE = SCALE*SCALOC
END IF
R(K,K) = U(1,1)
R(K,K+1) = U(1,2)
R(K+1,K+1) = U(2,2)
C
C If we are not at the end of S then set up and solve
C equation (6.2) or (10.20).
C
C Note that SB03OY returns ( u11*s11*inv( u11 ) ) in B
C and returns scaled alpha in A. ksize is the order of
C the remainder of S. k1, k2 and k3 point to the start
C of vectors in DWORK.
C
IF ( KOUNT.LE.N ) THEN
KSIZE = N - K - 1
K1 = KSIZE + 1
K2 = KSIZE + K1
K3 = KSIZE + K2
C
C Form the right-hand side of (6.2) or (10.20), the
C first column in DWORK( 1 ) ,..., DWORK( n - k - 1 )
C the second in DWORK( n - k ) ,...,
C DWORK( 2*( n - k - 1 ) ).
C
CALL DCOPY( KSIZE, R(K,K+2), LDR, DWORK, 1 )
CALL DCOPY( KSIZE, R(K+1,K+2), LDR, DWORK(K1), 1 )
CALL DTRMM( 'Right', 'Upper', 'No transpose',
$ 'Non-unit', KSIZE, 2, -ONE, A, 2, DWORK,
$ KSIZE )
IF ( CONT ) THEN
CALL DAXPY( KSIZE, -R(K,K), S(K,K+2), LDS, DWORK,
$ 1 )
CALL DAXPY( KSIZE, -R(K,K+1), S(K+1,K+2), LDS,
$ DWORK, 1)
CALL DAXPY( KSIZE, -R(K+1,K+1), S(K+1,K+2), LDS,
$ DWORK(K1), 1 )
ELSE
CALL DAXPY( KSIZE, -R(K,K)*B(1,1), S(K,K+2), LDS,
$ DWORK, 1 )
CALL DAXPY( KSIZE, -( R(K,K+1)*B(1,1) + R(K+1,K+1)
$ *B(2,1) ), S(K+1,K+2), LDS, DWORK, 1 )
CALL DAXPY( KSIZE, -R(K,K)*B(1,2), S(K,K+2), LDS,
$ DWORK(K1), 1 )
CALL DAXPY( KSIZE, -( R(K,K+1)*B(1,2) + R(K+1,K+1)
$ *B(2,2) ), S(K+1,K+2), LDS, DWORK(K1),
$ 1 )
END IF
C
C SB03OR solves the Sylvester equations. The solution
C is overwritten on DWORK.
C
CALL SB03OR( DISCR, LTRANS, KSIZE, 2, S(K+2,K+2), LDS,
$ B, 2, DWORK, KSIZE, SCALOC, INFO )
INFOM = MAX( INFO, INFOM )
IF( SCALOC.NE.ONE ) THEN
C
DO 30 J = 1, N
CALL DSCAL( J, SCALOC, R(1,J), 1 )
30 CONTINUE
C
SCALE = SCALE*SCALOC
END IF
C
C Copy the solution into the next 2*( n - k - 1 )
C elements of DWORK.
C
CALL DCOPY( 2*KSIZE, DWORK, 1, DWORK(K2), 1 )
C
C Now form the matrix Rhat of equation (6.4) or
C (10.22). Note that (10.22) is incorrect, so here we
C implement a corrected version of (10.22).
C
IF ( CONT ) THEN
C
C Swap the two rows of R with DWORK.
C
CALL DSWAP( KSIZE, DWORK, 1, R(K,K+2), LDR )
CALL DSWAP( KSIZE, DWORK(K1), 1, R(K+1,K+2), LDR )
C
C 1st column:
C
CALL DAXPY( KSIZE, -A(1,1), DWORK(K2), 1, DWORK,
$ 1 )
CALL DAXPY( KSIZE, -A(1,2), DWORK(K3), 1, DWORK,
$ 1 )
C
C 2nd column:
C
CALL DAXPY( KSIZE, -A(2,2), DWORK(K3), 1,
$ DWORK(K1), 1 )
ELSE
C
C Form v = S1'*u + s*u11', overwriting v on DWORK.
C
C Compute S1'*u, first multiplying by the
C triangular part of S1.
C
CALL DTRMM( 'Left', 'Upper', 'Transpose',
$ 'Non-unit', KSIZE, 2, ONE, S(K+2,K+2),
$ LDS, DWORK, KSIZE )
C
C Then multiply by the subdiagonal of S1 and add in
C to the above result.
C
J1 = K1
J2 = K + 2
C
DO 40 J = 1, KSIZE-1
IF ( S(J2+1,J2).NE.ZERO ) THEN
DWORK(J) = S(J2+1,J2)*DWORK(K2+J) + DWORK(J)
DWORK(J1) = S(J2+1,J2)*DWORK(K3+J) +
$ DWORK(J1)
END IF
J1 = J1 + 1
J2 = J2 + 1
40 CONTINUE
C
C Add in s*u11'.
C
CALL DAXPY( KSIZE, R(K,K), S(K,K+2), LDS, DWORK,
$ 1 )
CALL DAXPY( KSIZE, R(K,K+1), S(K+1,K+2), LDS,
$ DWORK, 1 )
CALL DAXPY( KSIZE, R(K+1,K+1), S(K+1,K+2), LDS,
$ DWORK(K1), 1 )
C
C Next recover r from R, swapping r with u.
C
CALL DSWAP( KSIZE, DWORK(K2), 1, R(K,K+2), LDR )
CALL DSWAP( KSIZE, DWORK(K3), 1, R(K+1,K+2), LDR )
C
C Now we perform the QR factorization.
C
C ( a ) = Q*( t ),
C ( b )
C
C and form
C
C ( p' ) = Q'*( r' ).
C ( y' ) ( v' )
C
C y is then the correct vector to use in (10.22).
C Note that a is upper triangular and that t and
C p are not required.
C
CALL DLARFG( 3, A(1,1), B(1,1), 1, TAU1 )
V1 = B(1,1)
T1 = TAU1*V1
V2 = B(2,1)
T2 = TAU1*V2
SUM = A(1,2) + V1*B(1,2) + V2*B(2,2)
B(1,2) = B(1,2) - SUM*T1
B(2,2) = B(2,2) - SUM*T2
CALL DLARFG( 3, A(2,2), B(1,2), 1, TAU2 )
V3 = B(1,2)
T3 = TAU2*V3
V4 = B(2,2)
T4 = TAU2*V4
J1 = K1
J2 = K2
J3 = K3
C
DO 50 J = 1, KSIZE
SUM = DWORK(J2) + V1*DWORK(J) + V2*DWORK(J1)
D1 = DWORK(J) - SUM*T1
D2 = DWORK(J1) - SUM*T2
SUM = DWORK(J3) + V3*D1 + V4*D2
DWORK(J) = D1 - SUM*T3
DWORK(J1) = D2 - SUM*T4
J1 = J1 + 1
J2 = J2 + 1
J3 = J3 + 1
50 CONTINUE
C
END IF
C
C Now update R1 to give Rhat.
C
CALL DCOPY( KSIZE, DWORK, 1, DWORK(K2), 1 )
CALL DCOPY( KSIZE, DWORK(K1), 1, DWORK(K3), 1 )
CALL DCOPY( KSIZE, DWORK(K3), 1, DWORK(2), 2 )
CALL DCOPY( KSIZE, DWORK(K2), 1, DWORK(1), 2 )
CALL MB04OD( 'Full', KSIZE, 0, 2, R(K+2,K+2), LDR,
$ DWORK, 2, DWORK, 1, DWORK, 1, DWORK(K2),
$ DWORK(K3) )
END IF
ELSE
C
C 1-by-1 block.
C
C Make sure S is stable or convergent and find u11 in
C equation (5.13) or (10.15).
C
IF ( DISCR ) THEN
ABSSKK = ABS( S(K,K) )
IF ( ( ABSSKK - ONE ).GE.ZERO ) THEN
INFO = 2
RETURN
END IF
TEMP = SQRT( ( ONE - ABSSKK )*( ONE + ABSSKK ) )
ELSE
IF ( S(K,K).GE.ZERO ) THEN
INFO = 2
RETURN
END IF
TEMP = SQRT( ABS( TWO*S(K,K) ) )
END IF
C
SCALOC = ONE
IF( TEMP.LT.SMIN ) THEN
TEMP = SMIN
INFOM = 1
END IF
DR = ABS( R(K,K) )
IF( TEMP.LT.ONE .AND. DR.GT.ONE ) THEN
IF( DR.GT.BIGNUM*TEMP )
$ SCALOC = ONE / DR
END IF
ALPHA = SIGN( TEMP, R(K,K) )
R(K,K) = R(K,K)/ALPHA
IF( SCALOC.NE.ONE ) THEN
C
DO 60 J = 1, N
CALL DSCAL( J, SCALOC, R(1,J), 1 )
60 CONTINUE
C
SCALE = SCALE*SCALOC
END IF
C
C If we are not at the end of S then set up and solve
C equation (5.14) or (10.16). ksize is the order of the
C remainder of S. k1 and k2 point to the start of vectors
C in DWORK.
C
IF ( KOUNT.LE.N ) THEN
KSIZE = N - K
K1 = KSIZE + 1
K2 = KSIZE + K1
C
C Form the right-hand side in DWORK( 1 ),...,
C DWORK( n - k ).
C
CALL DCOPY( KSIZE, R(K,K+1), LDR, DWORK, 1 )
CALL DSCAL( KSIZE, -ALPHA, DWORK, 1 )
IF ( CONT ) THEN
CALL DAXPY( KSIZE, -R(K,K), S(K,K+1), LDS, DWORK,
$ 1 )
ELSE
CALL DAXPY( KSIZE, -S(K,K)*R(K,K), S(K,K+1), LDS,
$ DWORK, 1 )
END IF
C
C SB03OR solves the Sylvester equations. The solution is
C overwritten on DWORK.
C
CALL SB03OR( DISCR, LTRANS, KSIZE, 1, S(K+1,K+1), LDS,
$ S(K,K), 1, DWORK, KSIZE, SCALOC, INFO )
INFOM = MAX( INFO, INFOM )
IF( SCALOC.NE.ONE ) THEN
C
DO 70 J = 1, N
CALL DSCAL( J, SCALOC, R(1,J), 1 )
70 CONTINUE
C
SCALE = SCALE*SCALOC
END IF
C
C Copy the solution into the next ( n - k ) elements
C of DWORK, copy the solution back into R and copy
C the row of R back into DWORK.
C
CALL DCOPY( KSIZE, DWORK, 1, DWORK(K1), 1 )
CALL DSWAP( KSIZE, DWORK, 1, R(K,K+1), LDR )
C
C Now form the matrix Rhat of equation (5.15) or
C (10.17), first computing y in DWORK, and then
C updating R1.
C
IF ( CONT ) THEN
CALL DAXPY( KSIZE, -ALPHA, DWORK(K1), 1, DWORK, 1 )
ELSE
C
C First form lambda( 1 )*r and then add in
C alpha*u11*s.
C
CALL DSCAL( KSIZE, -S(K,K), DWORK, 1 )
CALL DAXPY( KSIZE, ALPHA*R(K,K), S(K,K+1), LDS,
$ DWORK, 1 )
C
C Now form alpha*S1'*u, first multiplying by the
C sub-diagonal of S1 and then the triangular part
C of S1, and add the result in DWORK.
C
J1 = K + 1
C
DO 80 J = 1, KSIZE-1
IF ( S(J1+1,J1).NE.ZERO ) DWORK(J)
$ = ALPHA*S(J1+1,J1)*DWORK(K1+J) + DWORK(J)
J1 = J1 + 1
80 CONTINUE
C
CALL DTRMV( 'Upper', 'Transpose', 'Non-unit',
$ KSIZE, S(K+1,K+1), LDS, DWORK(K1), 1 )
CALL DAXPY( KSIZE, ALPHA, DWORK(K1), 1, DWORK, 1 )
END IF
CALL MB04OD( 'Full', KSIZE, 0, 1, R(K+1,K+1), LDR,
$ DWORK, 1, DWORK, 1, DWORK, 1, DWORK(K2),
$ DWORK(K1) )
END IF
END IF
GO TO 10
END IF
C END WHILE 10
C
ELSE
C
C Case op(M) = M'.
C
KOUNT = N
C
90 CONTINUE
C WHILE( KOUNT.GE.1 )LOOP
IF ( KOUNT.GE.1 ) THEN
K = KOUNT
IF ( KOUNT.EQ.1 ) THEN
TBYT = .FALSE.
KOUNT = KOUNT - 1
ELSE IF ( S(K,K-1).EQ.ZERO ) THEN
TBYT = .FALSE.
KOUNT = KOUNT - 1
ELSE
TBYT = .TRUE.
K = K - 1
IF ( K.GT.1 ) THEN
IF ( S(K,K-1).NE.ZERO ) THEN
INFO = 3
RETURN
END IF
END IF
KOUNT = KOUNT - 2
END IF
IF ( TBYT ) THEN
C
C Solve the two-by-two Lyapunov equation corresponding to
C (6.1) or (10.19), using the routine SB03OY.
C
B(1,1) = S(K,K)
B(2,1) = S(K+1,K)
B(1,2) = S(K,K+1)
B(2,2) = S(K+1,K+1)
U(1,1) = R(K,K)
U(1,2) = R(K,K+1)
U(2,2) = R(K+1,K+1)
C
CALL SB03OY( DISCR, LTRANS, ISGN, B, 2, U, 2, A, 2,
$ SCALOC, INFO )
IF ( INFO.GT.1 )
$ RETURN
INFOM = MAX( INFO, INFOM )
IF( SCALOC.NE.ONE ) THEN
C
DO 100 J = 1, N
CALL DSCAL( J, SCALOC, R(1,J), 1 )
100 CONTINUE
C
SCALE = SCALE*SCALOC
END IF
R(K,K) = U(1,1)
R(K,K+1) = U(1,2)
R(K+1,K+1) = U(2,2)
C
C If we are not at the front of S then set up and solve
C equation corresponding to (6.2) or (10.20).
C
C Note that SB03OY returns ( inv( u11 )*s11*u11 ) in B
C and returns scaled alpha, alpha = inv( u11 )*r11, in A.
C ksize is the order of the remainder leading part of S.
C k1, k2 and k3 point to the start of vectors in DWORK.
C
IF ( KOUNT.GE.1 ) THEN
KSIZE = K - 1
K1 = KSIZE + 1
K2 = KSIZE + K1
K3 = KSIZE + K2
C
C Form the right-hand side of equations corresponding to
C (6.2) or (10.20), the first column in DWORK( 1 ) ,...,
C DWORK( k - 1 ) the second in DWORK( k ) ,...,
C DWORK( 2*( k - 1 ) ).
C
CALL DCOPY( KSIZE, R(1,K), 1, DWORK, 1 )
CALL DCOPY( KSIZE, R(1,K+1), 1, DWORK(K1), 1 )
CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Non-unit',
$ KSIZE, 2, -ONE, A, 2, DWORK, KSIZE )
IF ( CONT ) THEN
CALL DAXPY( KSIZE, -R(K,K), S(1,K), 1, DWORK, 1 )
CALL DAXPY( KSIZE, -R(K,K+1), S(1,K), 1, DWORK(K1),
$ 1 )
CALL DAXPY( KSIZE, -R(K+1,K+1), S(1,K+1), 1,
$ DWORK(K1), 1 )
ELSE
CALL DAXPY( KSIZE, -( R(K,K)*B(1,1) + R(K,K+1)
$ *B(1,2) ), S(1,K), 1, DWORK, 1 )
CALL DAXPY( KSIZE, -R(K+1,K+1)*B(1,2), S(1,K+1), 1,
$ DWORK, 1 )
CALL DAXPY( KSIZE, -( R(K,K)*B(2,1) + R(K,K+1)
$ *B(2,2) ), S(1,K), 1, DWORK(K1), 1 )
CALL DAXPY( KSIZE, -R(K+1,K+1)*B(2,2), S(1,K+1), 1,
$ DWORK(K1), 1 )
END IF
C
C SB03OR solves the Sylvester equations. The solution
C is overwritten on DWORK.
C
CALL SB03OR( DISCR, LTRANS, KSIZE, 2, S, LDS, B, 2,
$ DWORK, KSIZE, SCALOC, INFO )
INFOM = MAX( INFO, INFOM )
IF( SCALOC.NE.ONE ) THEN
C
DO 110 J = 1, N
CALL DSCAL( J, SCALOC, R(1,J), 1 )
110 CONTINUE
C
SCALE = SCALE*SCALOC
END IF
C
C Copy the solution into the next 2*( k - 1 ) elements
C of DWORK.
C
CALL DCOPY( 2*KSIZE, DWORK, 1, DWORK(K2), 1 )
C
C Now form the matrix Rhat of equation corresponding
C to (6.4) or (10.22) (corrected version).
C
IF ( CONT ) THEN
C
C Swap the two columns of R with DWORK.
C
CALL DSWAP( KSIZE, DWORK, 1, R(1,K), 1 )
CALL DSWAP( KSIZE, DWORK(K1), 1, R(1,K+1), 1 )
C
C 1st column:
C
CALL DAXPY( KSIZE, -A(1,1), DWORK(K2), 1, DWORK,
$ 1 )
C
C 2nd column:
C
CALL DAXPY( KSIZE, -A(1,2), DWORK(K2), 1,
$ DWORK(K1), 1 )
CALL DAXPY( KSIZE, -A(2,2), DWORK(K3), 1,
$ DWORK(K1), 1 )
ELSE
C
C Form v = S1*u + s*u11, overwriting v on DWORK.
C
C Compute S1*u, first multiplying by the triangular
C part of S1.
C
CALL DTRMM( 'Left', 'Upper', 'No transpose',
$ 'Non-unit', KSIZE, 2, ONE, S, LDS,
$ DWORK, KSIZE )
C
C Then multiply by the subdiagonal of S1 and add in
C to the above result.
C
J1 = K1
C
DO 120 J = 2, KSIZE
J1 = J1 + 1
IF ( S(J,J-1).NE.ZERO ) THEN
DWORK(J) = S(J,J-1)*DWORK(K2+J-2) + DWORK(J)
DWORK(J1) = S(J,J-1)*DWORK(K3+J-2) +
$ DWORK(J1)
END IF
120 CONTINUE
C
C Add in s*u11.
C
CALL DAXPY( KSIZE, R(K,K), S(1,K), 1, DWORK, 1 )
CALL DAXPY( KSIZE, R(K,K+1), S(1,K), 1, DWORK(K1),
$ 1 )
CALL DAXPY( KSIZE, R(K+1,K+1), S(1,K+1), 1,
$ DWORK(K1), 1 )
C
C Next recover r from R, swapping r with u.
C
CALL DSWAP( KSIZE, DWORK(K2), 1, R(1,K), 1 )
CALL DSWAP( KSIZE, DWORK(K3), 1, R(1,K+1), 1 )
C
C Now we perform the QL factorization.
C
C ( a' ) = Q*( t ),
C ( b' )
C
C and form
C
C ( p' ) = Q'*( r' ).
C ( y' ) ( v' )
C
C y is then the correct vector to use in the
C relation corresponding to (10.22).
C Note that a is upper triangular and that t and
C p are not required.
C
CALL DLARFG( 3, A(2,2), B(2,1), 2, TAU1 )
V1 = B(2,1)
T1 = TAU1*V1
V2 = B(2,2)
T2 = TAU1*V2
SUM = A(1,2) + V1*B(1,1) + V2*B(1,2)
B(1,1) = B(1,1) - SUM*T1
B(1,2) = B(1,2) - SUM*T2
CALL DLARFG( 3, A(1,1), B(1,1), 2, TAU2 )
V3 = B(1,1)
T3 = TAU2*V3
V4 = B(1,2)
T4 = TAU2*V4
J1 = K1
J2 = K2
J3 = K3
C
DO 130 J = 1, KSIZE
SUM = DWORK(J3) + V1*DWORK(J) + V2*DWORK(J1)
D1 = DWORK(J) - SUM*T1
D2 = DWORK(J1) - SUM*T2
SUM = DWORK(J2) + V3*D1 + V4*D2
DWORK(J) = D1 - SUM*T3
DWORK(J1) = D2 - SUM*T4
J1 = J1 + 1
J2 = J2 + 1
J3 = J3 + 1
130 CONTINUE
C
END IF
C
C Now update R1 to give Rhat.
C
CALL MB04ND( 'Full', KSIZE, 0, 2, R, LDR, DWORK,
$ KSIZE, DWORK, 1, DWORK, 1, DWORK(K2),
$ DWORK(K3) )
END IF
ELSE
C
C 1-by-1 block.
C
C Make sure S is stable or convergent and find u11 in
C equation corresponding to (5.13) or (10.15).
C
IF ( DISCR ) THEN
ABSSKK = ABS( S(K,K) )
IF ( ( ABSSKK - ONE ).GE.ZERO ) THEN
INFO = 2
RETURN
END IF
TEMP = SQRT( ( ONE - ABSSKK )*( ONE + ABSSKK ) )
ELSE
IF ( S(K,K).GE.ZERO ) THEN
INFO = 2
RETURN
END IF
TEMP = SQRT( ABS( TWO*S(K,K) ) )
END IF
C
SCALOC = ONE
IF( TEMP.LT.SMIN ) THEN
TEMP = SMIN
INFOM = 1
END IF
DR = ABS( R(K,K) )
IF( TEMP.LT.ONE .AND. DR.GT.ONE ) THEN
IF( DR.GT.BIGNUM*TEMP )
$ SCALOC = ONE / DR
END IF
ALPHA = SIGN( TEMP, R(K,K) )
R(K,K) = R(K,K)/ALPHA
IF( SCALOC.NE.ONE ) THEN
C
DO 140 J = 1, N
CALL DSCAL( J, SCALOC, R(1,J), 1 )
140 CONTINUE
C
SCALE = SCALE*SCALOC
END IF
C
C If we are not at the front of S then set up and solve
C equation corresponding to (5.14) or (10.16). ksize is
C the order of the remainder leading part of S. k1 and k2
C point to the start of vectors in DWORK.
C
IF ( KOUNT.GE.1 ) THEN
KSIZE = K - 1
K1 = KSIZE + 1
K2 = KSIZE + K1
C
C Form the right-hand side in DWORK( 1 ),...,
C DWORK( k - 1 ).
C
CALL DCOPY( KSIZE, R(1,K), 1, DWORK, 1 )
CALL DSCAL( KSIZE, -ALPHA, DWORK, 1 )
IF ( CONT ) THEN
CALL DAXPY( KSIZE, -R(K,K), S(1,K), 1, DWORK, 1 )
ELSE
CALL DAXPY( KSIZE, -S(K,K)*R(K,K), S(1,K), 1,
$ DWORK, 1 )
END IF
C
C SB03OR solves the Sylvester equations. The solution is
C overwritten on DWORK.
C
CALL SB03OR( DISCR, LTRANS, KSIZE, 1, S, LDS, S(K,K),
$ 1, DWORK, KSIZE, SCALOC, INFO )
INFOM = MAX( INFO, INFOM )
IF( SCALOC.NE.ONE ) THEN
C
DO 150 J = 1, N
CALL DSCAL( J, SCALOC, R(1,J), 1 )
150 CONTINUE
C
SCALE = SCALE*SCALOC
END IF
C
C Copy the solution into the next ( k - 1 ) elements
C of DWORK, copy the solution back into R and copy
C the column of R back into DWORK.
C
CALL DCOPY( KSIZE, DWORK, 1, DWORK(K1), 1 )
CALL DSWAP( KSIZE, DWORK, 1, R(1,K), 1 )
C
C Now form the matrix Rhat of equation corresponding
C to (5.15) or (10.17), first computing y in DWORK,
C and then updating R1.
C
IF ( CONT ) THEN
CALL DAXPY( KSIZE, -ALPHA, DWORK(K1), 1, DWORK, 1 )
ELSE
C
C First form lambda( 1 )*r and then add in
C alpha*u11*s.
C
CALL DSCAL( KSIZE, -S(K,K), DWORK, 1 )
CALL DAXPY( KSIZE, ALPHA*R(K,K), S(1,K), 1, DWORK,
$ 1 )
C
C Now form alpha*S1*u, first multiplying by the
C sub-diagonal of S1 and then the triangular part
C of S1, and add the result in DWORK.
C
DO 160 J = 2, KSIZE
IF ( S(J,J-1).NE.ZERO ) DWORK(J)
$ = ALPHA*S(J,J-1)*DWORK(K1+J-2) + DWORK(J)
160 CONTINUE
C
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit',
$ KSIZE, S, LDS, DWORK(K1), 1 )
CALL DAXPY( KSIZE, ALPHA, DWORK(K1), 1, DWORK, 1 )
END IF
CALL MB04ND( 'Full', KSIZE, 0, 1, R, LDR, DWORK,
$ KSIZE, DWORK, 1, DWORK, 1, DWORK(K2),
$ DWORK(K1) )
END IF
END IF
GO TO 90
END IF
C END WHILE 90
C
END IF
INFO = INFOM
RETURN
C *** Last line of SB03OT ***
END
|