1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
SUBROUTINE SB03OY( DISCR, LTRANS, ISGN, S, LDS, R, LDR, A, LDA,
$ SCALE, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for the Cholesky factor U of X,
C
C op(U)'*op(U) = X,
C
C where U is a two-by-two upper triangular matrix, either the
C continuous-time two-by-two Lyapunov equation
C 2
C op(S)'*X + X*op(S) = -ISGN*scale *op(R)'*op(R),
C
C when DISCR = .FALSE., or the discrete-time two-by-two Lyapunov
C equation
C 2
C op(S)'*X*op(S) - X = -ISGN*scale *op(R)'*op(R),
C
C when DISCR = .TRUE., where op(K) = K or K' (i.e., the transpose of
C the matrix K), S is a two-by-two matrix with complex conjugate
C eigenvalues, R is a two-by-two upper triangular matrix,
C ISGN = -1 or 1, and scale is an output scale factor, set less
C than or equal to 1 to avoid overflow in X. The routine also
C computes two matrices, B and A, so that
C 2
C B*U = U*S and A*U = scale *R, if LTRANS = .FALSE., or
C 2
C U*B = S*U and U*A = scale *R, if LTRANS = .TRUE.,
C which are used by the general Lyapunov solver.
C In the continuous-time case ISGN*S must be stable, so that its
C eigenvalues must have strictly negative real parts.
C In the discrete-time case S must be convergent if ISGN = 1, that
C is, its eigenvalues must have moduli less than unity, or S must
C be completely divergent if ISGN = -1, that is, its eigenvalues
C must have moduli greater than unity.
C
C ARGUMENTS
C
C Mode Parameters
C
C DISCR LOGICAL
C Specifies the equation to be solved: 2
C = .FALSE.: op(S)'*X + X*op(S) = -ISGN*scale *op(R)'*op(R);
C 2
C = .TRUE. : op(S)'*X*op(S) - X = -ISGN*scale *op(R)'*op(R).
C
C LTRANS LOGICAL
C Specifies the form of op(K) to be used, as follows:
C = .FALSE.: op(K) = K (No transpose);
C = .TRUE. : op(K) = K**T (Transpose).
C
C ISGN INTEGER
C Specifies the sign of the equation as described before.
C ISGN may only be 1 or -1.
C
C Input/Output Parameters
C
C S (input/output) DOUBLE PRECISION array, dimension (LDS,2)
C On entry, S must contain a 2-by-2 matrix.
C On exit, S contains a 2-by-2 matrix B such that B*U = U*S,
C if LTRANS = .FALSE., or U*B = S*U, if LTRANS = .TRUE..
C Notice that if U is nonsingular then
C B = U*S*inv( U ), if LTRANS = .FALSE.
C B = inv( U )*S*U, if LTRANS = .TRUE..
C
C LDS INTEGER
C The leading dimension of array S. LDS >= 2.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR,2)
C On entry, R must contain a 2-by-2 upper triangular matrix.
C The element R( 2, 1 ) is not referenced.
C On exit, R contains U, the 2-by-2 upper triangular
C Cholesky factor of the solution X, X = op(U)'*op(U).
C
C LDR INTEGER
C The leading dimension of array R. LDR >= 2.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,2)
C A contains a 2-by-2 upper triangular matrix A satisfying
C A*U/scale = scale*R, if LTRANS = .FALSE., or
C U*A/scale = scale*R, if LTRANS = .TRUE..
C Notice that if U is nonsingular then
C A = scale*scale*R*inv( U ), if LTRANS = .FALSE.
C A = scale*scale*inv( U )*R, if LTRANS = .TRUE..
C
C LDA INTEGER
C The leading dimension of array A. LDA >= 2.
C
C SCALE (output) DOUBLE PRECISION
C The scale factor, scale, set less than or equal to 1 to
C prevent the solution overflowing.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if the Lyapunov equation is (nearly) singular
C (warning indicator);
C if DISCR = .FALSE., this means that while the
C matrix S has computed eigenvalues with negative real
C parts, it is only just stable in the sense that
C small perturbations in S can make one or more of the
C eigenvalues have a non-negative real part;
C if DISCR = .TRUE., this means that while the
C matrix S has computed eigenvalues inside the unit
C circle, it is nevertheless only just convergent, in
C the sense that small perturbations in S can make one
C or more of the eigenvalues lie outside the unit
C circle;
C perturbed values were used to solve the equation
C (but the matrix S is unchanged);
C = 2: if DISCR = .FALSE., and ISGN*S is not stable or
C if DISCR = .TRUE., ISGN = 1 and S is not convergent
C or if DISCR = .TRUE., ISGN = -1 and S is not
C completely divergent;
C = 4: if S has real eigenvalues.
C
C NOTE: In the interests of speed, this routine does not check all
C inputs for errors.
C
C METHOD
C
C The LAPACK scheme for solving 2-by-2 Sylvester equations is
C adapted for 2-by-2 Lyapunov equations, but directly computing the
C Cholesky factor of the solution.
C
C REFERENCES
C
C [1] Hammarling S. J.
C Numerical solution of the stable, non-negative definite
C Lyapunov equation.
C IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C Supersedes Release 2.0 routine SB03CY by Sven Hammarling,
C NAG Ltd., United Kingdom, November 1986.
C Partly based on SB03CY and PLYAP2 by A. Varga, University of
C Bochum, May 1992.
C
C REVISIONS
C
C Dec. 1997, April 1998.
C
C KEYWORDS
C
C Lyapunov equation, orthogonal transformation, real Schur form.
C
C *****************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, FOUR
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ FOUR = 4.0D0 )
C .. Scalar Arguments ..
LOGICAL DISCR, LTRANS
INTEGER INFO, ISGN, LDA, LDR, LDS
DOUBLE PRECISION SCALE
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), R(LDR,*), S(LDS,*)
C .. Local Scalars ..
DOUBLE PRECISION ABSB, ABSG, ABST, ALPHA, BIGNUM, E1, E2, EPS,
$ ETA, P1, P3, P3I, P3R, S11, S12, S21, S22,
$ SCALOC, SGN, SMIN, SMLNUM, SNP, SNQ, SNT, TEMPI,
$ TEMPR, V1, V3
C .. Local Arrays ..
DOUBLE PRECISION CSP(2), CSQ(2), CST(2), DELTA(2), DP(2), DT(2),
$ G(2), GAMMA(2), P2(2), T(2), TEMP(2), V2(2),
$ X11(2), X12(2), X21(2), X22(2), Y(2)
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY2, DLAPY3
EXTERNAL DLAMCH, DLAPY2, DLAPY3
C .. External Subroutines ..
EXTERNAL DLABAD, DLANV2, SB03OV
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SIGN, SQRT
C .. Executable Statements ..
C
C The comments in this routine refer to notation and equation
C numbers in sections 6 and 10 of [1].
C
C Find the eigenvalue lambda = E1 - i*E2 of s11.
C
INFO = 0
SGN = ISGN
S11 = S(1,1)
S12 = S(1,2)
S21 = S(2,1)
S22 = S(2,2)
C
C Set constants to control overflow.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SMLNUM*FOUR / EPS
BIGNUM = ONE / SMLNUM
C
SMIN = MAX( SMLNUM, EPS*MAX( ABS( S11 ), ABS( S12 ),
$ ABS( S21 ), ABS( S22 ) ) )
SCALE = ONE
C
CALL DLANV2( S11, S12, S21, S22, TEMPR, TEMPI, E1, E2, CSP, CSQ )
IF ( TEMPI.EQ.ZERO ) THEN
INFO = 4
RETURN
END IF
ABSB = DLAPY2( E1, E2 )
IF ( DISCR ) THEN
IF ( SGN*( ABSB - ONE ).GE.ZERO ) THEN
INFO = 2
RETURN
END IF
ELSE
IF ( SGN*E1.GE.ZERO ) THEN
INFO = 2
RETURN
END IF
END IF
C
C Compute the cos and sine that define Qhat. The sine is real.
C
TEMP(1) = S(1,1) - E1
TEMP(2) = E2
IF ( LTRANS ) TEMP(2) = -E2
CALL SB03OV( TEMP, S(2,1), CSQ, SNQ )
C
C beta in (6.9) is given by beta = E1 + i*E2, compute t.
C
TEMP(1) = CSQ(1)*S(1,2) - SNQ*S(1,1)
TEMP(2) = CSQ(2)*S(1,2)
TEMPR = CSQ(1)*S(2,2) - SNQ*S(2,1)
TEMPI = CSQ(2)*S(2,2)
T(1) = CSQ(1)*TEMP(1) - CSQ(2)*TEMP(2) + SNQ*TEMPR
T(2) = CSQ(1)*TEMP(2) + CSQ(2)*TEMP(1) + SNQ*TEMPI
C
IF ( LTRANS ) THEN
C ( -- )
C Case op(M) = M'. Note that the modified R is ( p3 p2 ).
C ( 0 p1 )
C
C Compute the cos and sine that define Phat.
C
TEMP(1) = CSQ(1)*R(2,2) - SNQ*R(1,2)
TEMP(2) = -CSQ(2)*R(2,2)
CALL SB03OV( TEMP, -SNQ*R(1,1), CSP, SNP )
C
C Compute p1, p2 and p3 of the relation corresponding to (6.11).
C
P1 = TEMP(1)
TEMP(1) = CSQ(1)*R(1,2) + SNQ*R(2,2)
TEMP(2) = -CSQ(2)*R(1,2)
TEMPR = CSQ(1)*R(1,1)
TEMPI = -CSQ(2)*R(1,1)
P2(1) = CSP(1)*TEMP(1) - CSP(2)*TEMP(2) + SNP*TEMPR
P2(2) = -CSP(1)*TEMP(2) - CSP(2)*TEMP(1) - SNP*TEMPI
P3R = CSP(1)*TEMPR + CSP(2)*TEMPI - SNP*TEMP(1)
P3I = CSP(1)*TEMPI - CSP(2)*TEMPR - SNP*TEMP(2)
ELSE
C
C Case op(M) = M.
C
C Compute the cos and sine that define Phat.
C
TEMP(1) = CSQ(1)*R(1,1) + SNQ*R(1,2)
TEMP(2) = CSQ(2)*R(1,1)
CALL SB03OV( TEMP, SNQ*R(2,2), CSP, SNP )
C
C Compute p1, p2 and p3 of (6.11).
C
P1 = TEMP(1)
TEMP(1) = CSQ(1)*R(1,2) - SNQ*R(1,1)
TEMP(2) = CSQ(2)*R(1,2)
TEMPR = CSQ(1)*R(2,2)
TEMPI = CSQ(2)*R(2,2)
P2(1) = CSP(1)*TEMP(1) - CSP(2)*TEMP(2) + SNP*TEMPR
P2(2) = CSP(1)*TEMP(2) + CSP(2)*TEMP(1) + SNP*TEMPI
P3R = CSP(1)*TEMPR + CSP(2)*TEMPI - SNP*TEMP(1)
P3I = CSP(2)*TEMPR - CSP(1)*TEMPI + SNP*TEMP(2)
END IF
C
C Make p3 real by multiplying by conjg ( p3 )/abs( p3 ) to give
C
C p3 := abs( p3 ).
C
IF ( P3I.EQ.ZERO ) THEN
P3 = ABS( P3R )
DP(1) = SIGN( ONE, P3R )
DP(2) = ZERO
ELSE
P3 = DLAPY2( P3R, P3I )
DP(1) = P3R/P3
DP(2) = -P3I/P3
END IF
C
C Now compute the quantities v1, v2, v3 and y in (6.13) - (6.15),
C or (10.23) - (10.25). Care is taken to avoid overflows.
C
IF ( DISCR ) THEN
ALPHA = SQRT( ABS( ONE - ABSB )*( ONE + ABSB ) )
ELSE
ALPHA = SQRT( ABS( TWO*E1 ) )
END IF
C
SCALOC = ONE
IF( ALPHA.LT.SMIN ) THEN
ALPHA = SMIN
INFO = 1
END IF
ABST = ABS( P1 )
IF( ALPHA.LT.ONE .AND. ABST.GT.ONE ) THEN
IF( ABST.GT.BIGNUM*ALPHA )
$ SCALOC = ONE / ABST
END IF
IF( SCALOC.NE.ONE ) THEN
P1 = SCALOC*P1
P2(1) = SCALOC*P2(1)
P2(2) = SCALOC*P2(2)
P3 = SCALOC*P3
SCALE = SCALOC*SCALE
END IF
V1 = P1/ALPHA
C
IF ( DISCR ) THEN
G(1) = ( ONE - E1 )*( ONE + E1 ) + E2**2
G(2) = -TWO*E1*E2
ABSG = DLAPY2( G(1), G(2) )
SCALOC = ONE
IF( ABSG.LT.SMIN ) THEN
ABSG = SMIN
INFO = 1
END IF
TEMP(1) = SGN*ALPHA*P2(1) + V1*( E1*T(1) - E2*T(2) )
TEMP(2) = SGN*ALPHA*P2(2) + V1*( E1*T(2) + E2*T(1) )
ABST = MAX( ABS( TEMP(1) ), ABS( TEMP(2) ) )
IF( ABSG.LT.ONE .AND. ABST.GT.ONE ) THEN
IF( ABST.GT.BIGNUM*ABSG )
$ SCALOC = ONE / ABST
END IF
IF( SCALOC.NE.ONE ) THEN
V1 = SCALOC*V1
TEMP(1) = SCALOC*TEMP(1)
TEMP(2) = SCALOC*TEMP(2)
P1 = SCALOC*P1
P2(1) = SCALOC*P2(1)
P2(2) = SCALOC*P2(2)
P3 = SCALOC*P3
SCALE = SCALOC*SCALE
END IF
TEMP(1) = TEMP(1)/ABSG
TEMP(2) = TEMP(2)/ABSG
C
SCALOC = ONE
V2(1) = G(1)*TEMP(1) + G(2)*TEMP(2)
V2(2) = G(1)*TEMP(2) - G(2)*TEMP(1)
ABST = MAX( ABS( V2(1) ), ABS( V2(2) ) )
IF( ABSG.LT.ONE .AND. ABST.GT.ONE ) THEN
IF( ABST.GT.BIGNUM*ABSG )
$ SCALOC = ONE / ABST
END IF
IF( SCALOC.NE.ONE ) THEN
V1 = SCALOC*V1
V2(1) = SCALOC*V2(1)
V2(2) = SCALOC*V2(2)
P1 = SCALOC*P1
P2(1) = SCALOC*P2(1)
P2(2) = SCALOC*P2(2)
P3 = SCALOC*P3
SCALE = SCALOC*SCALE
END IF
V2(1) = V2(1)/ABSG
V2(2) = V2(2)/ABSG
C
SCALOC = ONE
TEMP(1) = P1*T(1) - TWO*E2*P2(2)
TEMP(2) = P1*T(2) + TWO*E2*P2(1)
ABST = MAX( ABS( TEMP(1) ), ABS( TEMP(2) ) )
IF( ABSG.LT.ONE .AND. ABST.GT.ONE ) THEN
IF( ABST.GT.BIGNUM*ABSG )
$ SCALOC = ONE / ABST
END IF
IF( SCALOC.NE.ONE ) THEN
TEMP(1) = SCALOC*TEMP(1)
TEMP(2) = SCALOC*TEMP(2)
V1 = SCALOC*V1
V2(1) = SCALOC*V2(1)
V2(2) = SCALOC*V2(2)
P3 = SCALOC*P3
SCALE = SCALOC*SCALE
END IF
TEMP(1) = TEMP(1)/ABSG
TEMP(2) = TEMP(2)/ABSG
C
SCALOC = ONE
Y(1) = -( G(1)*TEMP(1) + G(2)*TEMP(2) )
Y(2) = -( G(1)*TEMP(2) - G(2)*TEMP(1) )
ABST = MAX( ABS( Y(1) ), ABS( Y(2) ) )
IF( ABSG.LT.ONE .AND. ABST.GT.ONE ) THEN
IF( ABST.GT.BIGNUM*ABSG )
$ SCALOC = ONE / ABST
END IF
IF( SCALOC.NE.ONE ) THEN
Y(1) = SCALOC*Y(1)
Y(2) = SCALOC*Y(2)
V1 = SCALOC*V1
V2(1) = SCALOC*V2(1)
V2(2) = SCALOC*V2(2)
P3 = SCALOC*P3
SCALE = SCALOC*SCALE
END IF
Y(1) = Y(1)/ABSG
Y(2) = Y(2)/ABSG
ELSE
C
SCALOC = ONE
IF( ABSB.LT.SMIN ) THEN
ABSB = SMIN
INFO = 1
END IF
TEMP(1) = SGN*ALPHA*P2(1) + V1*T(1)
TEMP(2) = SGN*ALPHA*P2(2) + V1*T(2)
ABST = MAX( ABS( TEMP(1) ), ABS( TEMP(2) ) )
IF( ABSB.LT.ONE .AND. ABST.GT.ONE ) THEN
IF( ABST.GT.BIGNUM*ABSB )
$ SCALOC = ONE / ABST
END IF
IF( SCALOC.NE.ONE ) THEN
V1 = SCALOC*V1
TEMP(1) = SCALOC*TEMP(1)
TEMP(2) = SCALOC*TEMP(2)
P2(1) = SCALOC*P2(1)
P2(2) = SCALOC*P2(2)
P3 = SCALOC*P3
SCALE = SCALOC*SCALE
END IF
TEMP(1) = TEMP(1)/( TWO*ABSB )
TEMP(2) = TEMP(2)/( TWO*ABSB )
SCALOC = ONE
V2(1) = -( E1*TEMP(1) + E2*TEMP(2) )
V2(2) = -( E1*TEMP(2) - E2*TEMP(1) )
ABST = MAX( ABS( V2(1) ), ABS( V2(2) ) )
IF( ABSB.LT.ONE .AND. ABST.GT.ONE ) THEN
IF( ABST.GT.BIGNUM*ABSB )
$ SCALOC = ONE / ABST
END IF
IF( SCALOC.NE.ONE ) THEN
V1 = SCALOC*V1
V2(1) = SCALOC*V2(1)
V2(2) = SCALOC*V2(2)
P2(1) = SCALOC*P2(1)
P2(2) = SCALOC*P2(2)
P3 = SCALOC*P3
SCALE = SCALOC*SCALE
END IF
V2(1) = V2(1)/ABSB
V2(2) = V2(2)/ABSB
Y(1) = P2(1) - ALPHA*V2(1)
Y(2) = P2(2) - ALPHA*V2(2)
END IF
C
SCALOC = ONE
V3 = DLAPY3( P3, Y(1), Y(2) )
IF( ALPHA.LT.ONE .AND. V3.GT.ONE ) THEN
IF( V3.GT.BIGNUM*ALPHA )
$ SCALOC = ONE / V3
END IF
IF( SCALOC.NE.ONE ) THEN
V1 = SCALOC*V1
V2(1) = SCALOC*V2(1)
V2(2) = SCALOC*V2(2)
V3 = SCALOC*V3
P3 = SCALOC*P3
SCALE = SCALOC*SCALE
END IF
V3 = V3/ALPHA
C
IF ( LTRANS ) THEN
C
C Case op(M) = M'.
C
C Form X = conjg( Qhat' )*v11.
C
X11(1) = CSQ(1)*V3
X11(2) = CSQ(2)*V3
X21(1) = SNQ*V3
X12(1) = CSQ(1)*V2(1) + CSQ(2)*V2(2) - SNQ*V1
X12(2) = -CSQ(1)*V2(2) + CSQ(2)*V2(1)
X22(1) = CSQ(1)*V1 + SNQ*V2(1)
X22(2) = -CSQ(2)*V1 - SNQ*V2(2)
C
C Obtain u11 from the RQ-factorization of X. The conjugate of
C X22 should be taken.
C
X22(2) = -X22(2)
CALL SB03OV( X22, X21(1), CST, SNT )
R(2,2) = X22(1)
R(1,2) = CST(1)*X12(1) - CST(2)*X12(2) + SNT*X11(1)
TEMPR = CST(1)*X11(1) + CST(2)*X11(2) - SNT*X12(1)
TEMPI = CST(1)*X11(2) - CST(2)*X11(1) - SNT*X12(2)
IF ( TEMPI.EQ.ZERO ) THEN
R(1,1) = ABS( TEMPR )
DT(1) = SIGN( ONE, TEMPR )
DT(2) = ZERO
ELSE
R(1,1) = DLAPY2( TEMPR, TEMPI )
DT(1) = TEMPR/R(1,1)
DT(2) = -TEMPI/R(1,1)
END IF
ELSE
C
C Case op(M) = M.
C
C Now form X = v11*conjg( Qhat' ).
C
X11(1) = CSQ(1)*V1 - SNQ*V2(1)
X11(2) = -CSQ(2)*V1 + SNQ*V2(2)
X21(1) = -SNQ*V3
X12(1) = CSQ(1)*V2(1) + CSQ(2)*V2(2) + SNQ*V1
X12(2) = -CSQ(1)*V2(2) + CSQ(2)*V2(1)
X22(1) = CSQ(1)*V3
X22(2) = CSQ(2)*V3
C
C Obtain u11 from the QR-factorization of X.
C
CALL SB03OV( X11, X21(1), CST, SNT )
R(1,1) = X11(1)
R(1,2) = CST(1)*X12(1) + CST(2)*X12(2) + SNT*X22(1)
TEMPR = CST(1)*X22(1) - CST(2)*X22(2) - SNT*X12(1)
TEMPI = CST(1)*X22(2) + CST(2)*X22(1) - SNT*X12(2)
IF ( TEMPI.EQ.ZERO ) THEN
R(2,2) = ABS( TEMPR )
DT(1) = SIGN( ONE, TEMPR )
DT(2) = ZERO
ELSE
R(2,2) = DLAPY2( TEMPR, TEMPI )
DT(1) = TEMPR/R(2,2)
DT(2) = -TEMPI/R(2,2)
END IF
END IF
C
C The computations below are not needed when B and A are not
C useful. Compute delta, eta and gamma as in (6.21) or (10.26).
C
IF ( ( Y(1).EQ.ZERO ).AND.( Y(2).EQ.ZERO ) ) THEN
DELTA(1) = ZERO
DELTA(2) = ZERO
GAMMA(1) = ZERO
GAMMA(2) = ZERO
ETA = ALPHA
ELSE
DELTA(1) = Y(1)/V3
DELTA(2) = Y(2)/V3
GAMMA(1) = -ALPHA*DELTA(1)
GAMMA(2) = -ALPHA*DELTA(2)
ETA = P3/V3
IF ( DISCR ) THEN
TEMPR = E1*DELTA(1) - E2*DELTA(2)
DELTA(2) = E1*DELTA(2) + E2*DELTA(1)
DELTA(1) = TEMPR
END IF
END IF
C
IF ( LTRANS ) THEN
C
C Case op(M) = M'.
C
C Find X = conjg( That' )*( inv( v11 )*s11hat*v11 ).
C ( Defer the scaling.)
C
X11(1) = CST(1)*E1 + CST(2)*E2
X11(2) = -CST(1)*E2 + CST(2)*E1
X21(1) = SNT*E1
X21(2) = -SNT*E2
X12(1) = SGN*( CST(1)*GAMMA(1) + CST(2)*GAMMA(2) ) - SNT*E1
X12(2) = SGN*( -CST(1)*GAMMA(2) + CST(2)*GAMMA(1) ) - SNT*E2
X22(1) = CST(1)*E1 + CST(2)*E2 + SGN*SNT*GAMMA(1)
X22(2) = CST(1)*E2 - CST(2)*E1 - SGN*SNT*GAMMA(2)
C
C Now find B = X*That. ( Include the scaling here.)
C
S(1,1) = CST(1)*X11(1) + CST(2)*X11(2) - SNT*X12(1)
TEMPR = CST(1)*X21(1) + CST(2)*X21(2) - SNT*X22(1)
TEMPI = CST(1)*X21(2) - CST(2)*X21(1) - SNT*X22(2)
S(2,1) = DT(1)*TEMPR - DT(2)*TEMPI
TEMPR = CST(1)*X12(1) - CST(2)*X12(2) + SNT*X11(1)
TEMPI = CST(1)*X12(2) + CST(2)*X12(1) + SNT*X11(2)
S(1,2) = DT(1)*TEMPR + DT(2)*TEMPI
S(2,2) = CST(1)*X22(1) - CST(2)*X22(2) + SNT*X21(1)
C
C Form X = ( inv( v11 )*p11 )*conjg( Phat' ).
C
TEMPR = DP(1)*ETA
TEMPI = -DP(2)*ETA
X11(1) = CSP(1)*TEMPR - CSP(2)*TEMPI + SNP*DELTA(1)
X11(2) = CSP(1)*TEMPI + CSP(2)*TEMPR - SNP*DELTA(2)
X21(1) = SNP*ALPHA
X12(1) = -SNP*TEMPR + CSP(1)*DELTA(1) - CSP(2)*DELTA(2)
X12(2) = -SNP*TEMPI - CSP(1)*DELTA(2) - CSP(2)*DELTA(1)
X22(1) = CSP(1)*ALPHA
X22(2) = -CSP(2)*ALPHA
C
C Finally form A = conjg( That' )*X.
C
TEMPR = CST(1)*X11(1) - CST(2)*X11(2) - SNT*X21(1)
TEMPI = CST(1)*X22(2) + CST(2)*X22(1)
A(1,1) = DT(1)*TEMPR + DT(2)*TEMPI
TEMPR = CST(1)*X12(1) - CST(2)*X12(2) - SNT*X22(1)
TEMPI = CST(1)*X12(2) + CST(2)*X12(1) - SNT*X22(1)
A(1,2) = DT(1)*TEMPR + DT(2)*TEMPI
A(2,1) = ZERO
A(2,2) = CST(1)*X22(1) + CST(2)*X22(2) + SNT*X12(1)
ELSE
C
C Case op(M) = M.
C
C Find X = That*( v11*s11hat*inv( v11 ) ). ( Defer the scaling.)
C
X11(1) = CST(1)*E1 + CST(2)*E2
X11(2) = CST(1)*E2 - CST(2)*E1
X21(1) = -SNT*E1
X21(2) = -SNT*E2
X12(1) = SGN*( CST(1)*GAMMA(1) - CST(2)*GAMMA(2) ) + SNT*E1
X12(2) = SGN*( -CST(1)*GAMMA(2) - CST(2)*GAMMA(1) ) - SNT*E2
X22(1) = CST(1)*E1 + CST(2)*E2 - SGN*SNT*GAMMA(1)
X22(2) = -CST(1)*E2 + CST(2)*E1 + SGN*SNT*GAMMA(2)
C
C Now find B = X*conjg( That' ). ( Include the scaling here.)
C
S(1,1) = CST(1)*X11(1) - CST(2)*X11(2) + SNT*X12(1)
TEMPR = CST(1)*X21(1) - CST(2)*X21(2) + SNT*X22(1)
TEMPI = CST(1)*X21(2) + CST(2)*X21(1) + SNT*X22(2)
S(2,1) = DT(1)*TEMPR - DT(2)*TEMPI
TEMPR = CST(1)*X12(1) + CST(2)*X12(2) - SNT*X11(1)
TEMPI = CST(1)*X12(2) - CST(2)*X12(1) - SNT*X11(2)
S(1,2) = DT(1)*TEMPR + DT(2)*TEMPI
S(2,2) = CST(1)*X22(1) + CST(2)*X22(2) - SNT*X21(1)
C
C Form X = Phat*( p11*inv( v11 ) ).
C
TEMPR = DP(1)*ETA
TEMPI = -DP(2)*ETA
X11(1) = CSP(1)*ALPHA
X11(2) = CSP(2)*ALPHA
X21(1) = SNP*ALPHA
X12(1) = CSP(1)*DELTA(1) + CSP(2)*DELTA(2) - SNP*TEMPR
X12(2) = -CSP(1)*DELTA(2) + CSP(2)*DELTA(1) - SNP*TEMPI
X22(1) = CSP(1)*TEMPR + CSP(2)*TEMPI + SNP*DELTA(1)
X22(2) = CSP(1)*TEMPI - CSP(2)*TEMPR - SNP*DELTA(2)
C
C Finally form A = X*conjg( That' ).
C
A(1,1) = CST(1)*X11(1) - CST(2)*X11(2) + SNT*X12(1)
A(2,1) = ZERO
A(1,2) = CST(1)*X12(1) + CST(2)*X12(2) - SNT*X11(1)
TEMPR = CST(1)*X22(1) + CST(2)*X22(2) - SNT*X21(1)
TEMPI = CST(1)*X22(2) - CST(2)*X22(1)
A(2,2) = DT(1)*TEMPR + DT(2)*TEMPI
END IF
C
IF( SCALE.NE.ONE ) THEN
A(1,1) = SCALE*A(1,1)
A(1,2) = SCALE*A(1,2)
A(2,2) = SCALE*A(2,2)
END IF
C
RETURN
C *** Last line of SB03OY ***
END
|