File: SB03SY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (451 lines) | stat: -rw-r--r-- 14,604 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
      SUBROUTINE SB03SY( JOB, TRANA, LYAPUN, N, T, LDT, U, LDU, XA,
     $                   LDXA, SEPD, THNORM, IWORK, DWORK, LDWORK,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To estimate the "separation" between the matrices op(A) and
C     op(A)',
C
C     sepd(op(A),op(A)') = min norm(op(A)'*X*op(A) - X)/norm(X)
C                        = 1 / norm(inv(Omega))
C
C     and/or the 1-norm of Theta, where op(A) = A or A' (A**T), and
C     Omega and Theta are linear operators associated to the real
C     discrete-time Lyapunov matrix equation
C
C            op(A)'*X*op(A) - X = C,
C
C     defined by
C
C     Omega(W) = op(A)'*W*op(A) - W,
C     Theta(W) = inv(Omega(op(W)'*X*op(A) + op(A)'*X*op(W))).
C
C     The 1-norm condition estimators are used.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'S':  Compute the separation only;
C             = 'T':  Compute the norm of Theta only;
C             = 'B':  Compute both the separation and the norm of Theta.
C
C     TRANA   CHARACTER*1
C             Specifies the form of op(A) to be used, as follows:
C             = 'N':  op(A) = A    (No transpose);
C             = 'T':  op(A) = A**T (Transpose);
C             = 'C':  op(A) = A**T (Conjugate transpose = Transpose).
C
C     LYAPUN  CHARACTER*1
C             Specifies whether or not the original Lyapunov equations
C             should be solved, as follows:
C             = 'O':  Solve the original Lyapunov equations, updating
C                     the right-hand sides and solutions with the
C                     matrix U, e.g., X <-- U'*X*U;
C             = 'R':  Solve reduced Lyapunov equations only, without
C                     updating the right-hand sides and solutions.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A and X.  N >= 0.
C
C     T       (input) DOUBLE PRECISION array, dimension (LDT,N)
C             The leading N-by-N upper Hessenberg part of this array
C             must contain the upper quasi-triangular matrix T in Schur
C             canonical form from a Schur factorization of A.
C
C     LDT     INTEGER
C             The leading dimension of array T.  LDT >= MAX(1,N).
C
C     U       (input) DOUBLE PRECISION array, dimension (LDU,N)
C             The leading N-by-N part of this array must contain the
C             orthogonal matrix U from a real Schur factorization of A.
C             If LYAPUN = 'R', the array U is not referenced.
C
C     LDU     INTEGER
C             The leading dimension of array U.
C             LDU >= 1,        if LYAPUN = 'R';
C             LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C     XA      (input) DOUBLE PRECISION array, dimension (LDXA,N)
C             The leading N-by-N part of this array must contain the
C             matrix product X*op(A), if LYAPUN = 'O', or U'*X*U*op(T),
C             if LYAPUN = 'R', in the Lyapunov equation.
C             If JOB = 'S', the array XA is not referenced.
C
C     LDXA    INTEGER
C             The leading dimension of array XA.
C             LDXA >= 1,        if JOB = 'S';
C             LDXA >= MAX(1,N), if JOB = 'T' or 'B'.
C
C     SEPD    (output) DOUBLE PRECISION
C             If JOB = 'S' or JOB = 'B', and INFO >= 0, SEPD contains
C             the estimated quantity sepd(op(A),op(A)').
C             If JOB = 'T' or N = 0, SEPD is not referenced.
C
C     THNORM  (output) DOUBLE PRECISION
C             If JOB = 'T' or JOB = 'B', and INFO >= 0, THNORM contains
C             the estimated 1-norm of operator Theta.
C             If JOB = 'S' or N = 0, THNORM is not referenced.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N*N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 0,            if N = 0;
C             LDWORK >= MAX(3,2*N*N), if N > 0.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = N+1:  if T has (almost) reciprocal eigenvalues;
C                   perturbed values were used to solve Lyapunov
C                   equations (but the matrix T is unchanged).
C
C     METHOD
C
C     SEPD is defined as
C
C            sepd( op(A), op(A)' ) = sigma_min( K )
C
C     where sigma_min(K) is the smallest singular value of the
C     N*N-by-N*N matrix
C
C        K = kprod( op(A)', op(A)' ) - I(N**2).
C
C     I(N**2) is an N*N-by-N*N identity matrix, and kprod denotes the
C     Kronecker product. The routine estimates sigma_min(K) by the
C     reciprocal of an estimate of the 1-norm of inverse(K), computed as
C     suggested in [1]. This involves the solution of several discrete-
C     time Lyapunov equations, either direct or transposed. The true
C     reciprocal 1-norm of inverse(K) cannot differ from sigma_min(K) by
C     more than a factor of N.
C     The 1-norm of Theta is estimated similarly.
C
C     REFERENCES
C
C     [1] Higham, N.J.
C         FORTRAN codes for estimating the one-norm of a real or
C         complex matrix, with applications to condition estimation.
C         ACM Trans. Math. Softw., 14, pp. 381-396, 1988.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C
C     FURTHER COMMENTS
C
C     When SEPD is zero, the routine returns immediately, with THNORM
C     (if requested) not set. In this case, the equation is singular.
C     The option LYAPUN = 'R' may occasionally produce slightly worse
C     or better estimates, and it is much faster than the option 'O'.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Oct. 1998. Partly based on DDLSVX (and then SB03SD) by P. Petkov,
C     Tech. University of Sofia, March 1998 (and December 1998).
C
C     REVISIONS
C
C     February 6, 1999, V. Sima, Katholieke Univ. Leuven, Belgium.
C     V. Sima, Research Institute for Informatics, Bucharest, Oct. 2004.
C
C     KEYWORDS
C
C     Lyapunov equation, orthogonal transformation, real Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, HALF
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          JOB, LYAPUN, TRANA
      INTEGER            INFO, LDT, LDU, LDWORK, LDXA, N
      DOUBLE PRECISION   SEPD, THNORM
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   DWORK( * ), T( LDT, * ), U( LDU, * ),
     $                   XA( LDXA, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            NOTRNA, UPDATE, WANTS, WANTT
      CHARACTER          TRANAT, UPLO
      INTEGER            INFO2, ITMP, KASE, NN
      DOUBLE PRECISION   BIGNUM, EST, SCALE
C     ..
C     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANSY
      EXTERNAL           DLAMCH, DLANSY, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           DLACON, DLACPY, DSCAL, DSYR2K, MA02ED, MB01RU,
     $                   SB03MX, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          MAX
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      WANTS  = LSAME( JOB,    'S' )
      WANTT  = LSAME( JOB,    'T' )
      NOTRNA = LSAME( TRANA,  'N' )
      UPDATE = LSAME( LYAPUN, 'O' )
C
      NN   = N*N
      INFO = 0
      IF( .NOT. ( WANTS .OR. WANTT .OR. LSAME( JOB, 'B' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( NOTRNA .OR. LSAME( TRANA, 'T' ) .OR.
     $                            LSAME( TRANA, 'C' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDU.LT.1 .OR. ( UPDATE .AND. LDU.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDXA.LT.1 .OR. ( .NOT.WANTS .AND. LDXA.LT.N ) ) THEN
         INFO = -10
      ELSE IF( LDWORK.LT.0 .OR.
     $       ( LDWORK.LT.MAX( 3, 2*NN ) .AND. N.GT.0 ) ) THEN
         INFO = -15
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB03SY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 )
     $   RETURN
C
      ITMP = NN + 1
C
      IF( NOTRNA ) THEN
         TRANAT = 'T'
      ELSE
         TRANAT = 'N'
      END IF
C
      IF( .NOT.WANTT ) THEN
C
C        Estimate sepd(op(A),op(A)').
C        Workspace:  max(3,2*N*N).
C
         KASE = 0
C
C        REPEAT
   10    CONTINUE
         CALL DLACON( NN, DWORK( ITMP ), DWORK, IWORK, EST, KASE )
         IF( KASE.NE.0 ) THEN
C
C           Select the triangular part of symmetric matrix to be used.
C
            IF( DLANSY( '1-norm', 'Upper', N, DWORK, N, DWORK( ITMP ) )
     $          .GE.
     $          DLANSY( '1-norm', 'Lower', N, DWORK, N, DWORK( ITMP ) )
     $        ) THEN
               UPLO = 'U'
            ELSE
               UPLO = 'L'
            END IF
C
            IF( UPDATE ) THEN
C
C              Transform the right-hand side: RHS := U'*RHS*U.
C
               CALL MB01RU( UPLO, 'Transpose', N, N, ZERO, ONE, DWORK,
     $                      N, U, LDU, DWORK, N, DWORK( ITMP ), NN,
     $                      INFO2 )
               CALL DSCAL( N, HALF, DWORK, N+1 )
            END IF
            CALL MA02ED( UPLO, N, DWORK, N )
C
            IF( KASE.EQ.1 ) THEN
C
C              Solve op(T)'*Y*op(T) - Y = scale*RHS.
C
               CALL SB03MX( TRANA, N, T, LDT, DWORK, N, SCALE,
     $                      DWORK( ITMP ), INFO2 )
            ELSE
C
C              Solve op(T)*W*op(T)' - W = scale*RHS.
C
               CALL SB03MX( TRANAT, N, T, LDT, DWORK, N, SCALE,
     $                      DWORK( ITMP ), INFO2 )
            END IF
C
            IF( INFO2.GT.0 )
     $         INFO = N + 1
C
            IF( UPDATE ) THEN
C
C              Transform back to obtain the solution: Z := U*Z*U', with
C              Z = Y or Z = W.
C
               CALL MB01RU( UPLO, 'No transpose', N, N, ZERO, ONE,
     $                      DWORK, N, U, LDU, DWORK, N, DWORK( ITMP ),
     $                      NN, INFO2 )
               CALL DSCAL( N, HALF, DWORK, N+1 )
C
C              Fill in the remaining triangle of the symmetric matrix.
C
               CALL MA02ED( UPLO, N, DWORK, N )
            END IF
C
            GO TO 10
         END IF
C        UNTIL KASE = 0
C
         IF( EST.GT.SCALE ) THEN
            SEPD = SCALE / EST
         ELSE
            BIGNUM = ONE / DLAMCH( 'Safe minimum' )
            IF( SCALE.LT.EST*BIGNUM ) THEN
               SEPD = SCALE / EST
            ELSE
               SEPD = BIGNUM
            END IF
         END IF
C
C        Return if the equation is singular.
C
         IF( SEPD.EQ.ZERO )
     $      RETURN
      END IF
C
      IF( .NOT.WANTS ) THEN
C
C        Estimate norm(Theta).
C        Workspace:  max(3,2*N*N).
C
         KASE = 0
C
C        REPEAT
   20    CONTINUE
         CALL DLACON( NN, DWORK( ITMP ), DWORK, IWORK, EST, KASE )
         IF( KASE.NE.0 ) THEN
C
C           Select the triangular part of symmetric matrix to be used.
C
            IF( DLANSY( '1-norm', 'Upper', N, DWORK, N, DWORK( ITMP ) )
     $          .GE.
     $          DLANSY( '1-norm', 'Lower', N, DWORK, N, DWORK( ITMP ) )
     $        ) THEN
               UPLO = 'U'
            ELSE
               UPLO = 'L'
            END IF
C
C           Fill in the remaining triangle of the symmetric matrix.
C
            CALL MA02ED( UPLO, N, DWORK, N )
C
C           Compute RHS = op(W)'*X*op(A) + op(A)'*X*op(W).
C
            CALL DSYR2K( UPLO, TRANAT, N, N, ONE, DWORK, N, XA, LDXA,
     $                   ZERO, DWORK( ITMP ), N )
            CALL DLACPY( UPLO, N, N, DWORK( ITMP ), N, DWORK, N )
C
            IF( UPDATE ) THEN
C
C              Transform the right-hand side: RHS := U'*RHS*U.
C
               CALL MB01RU( UPLO, 'Transpose', N, N, ZERO, ONE, DWORK,
     $                      N, U, LDU, DWORK, N, DWORK( ITMP ), NN,
     $                      INFO2 )
               CALL DSCAL( N, HALF, DWORK, N+1 )
            END IF
            CALL MA02ED( UPLO, N, DWORK, N )
C
            IF( KASE.EQ.1 ) THEN
C
C              Solve op(T)'*Y*op(T) - Y = scale*RHS.
C
               CALL SB03MX( TRANA, N, T, LDT, DWORK, N, SCALE,
     $                      DWORK( ITMP ), INFO2 )
            ELSE
C
C              Solve op(T)*W*op(T)' - W = scale*RHS.
C
               CALL SB03MX( TRANAT, N, T, LDT, DWORK, N, SCALE,
     $                      DWORK( ITMP ), INFO2 )
            END IF
C
            IF( INFO2.GT.0 )
     $         INFO = N + 1
C
            IF( UPDATE ) THEN
C
C              Transform back to obtain the solution: Z := U*Z*U', with
C              Z = Y or Z = W.
C
               CALL MB01RU( UPLO, 'No transpose', N, N, ZERO, ONE,
     $                      DWORK, N, U, LDU, DWORK, N, DWORK( ITMP ),
     $                      NN, INFO2 )
               CALL DSCAL( N, HALF, DWORK, N+1 )
C
C              Fill in the remaining triangle of the symmetric matrix.
C
               CALL MA02ED( UPLO, N, DWORK, N )
            END IF
C
            GO TO 20
         END IF
C        UNTIL KASE = 0
C
         IF( EST.LT.SCALE ) THEN
            THNORM = EST / SCALE
         ELSE
            BIGNUM = ONE / DLAMCH( 'Safe minimum' )
            IF( EST.LT.SCALE*BIGNUM ) THEN
               THNORM = EST / SCALE
            ELSE
               THNORM = BIGNUM
            END IF
         END IF
      END IF
C
      RETURN
C *** Last line of SB03SY ***
      END