1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
SUBROUTINE SB03SY( JOB, TRANA, LYAPUN, N, T, LDT, U, LDU, XA,
$ LDXA, SEPD, THNORM, IWORK, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To estimate the "separation" between the matrices op(A) and
C op(A)',
C
C sepd(op(A),op(A)') = min norm(op(A)'*X*op(A) - X)/norm(X)
C = 1 / norm(inv(Omega))
C
C and/or the 1-norm of Theta, where op(A) = A or A' (A**T), and
C Omega and Theta are linear operators associated to the real
C discrete-time Lyapunov matrix equation
C
C op(A)'*X*op(A) - X = C,
C
C defined by
C
C Omega(W) = op(A)'*W*op(A) - W,
C Theta(W) = inv(Omega(op(W)'*X*op(A) + op(A)'*X*op(W))).
C
C The 1-norm condition estimators are used.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the computation to be performed, as follows:
C = 'S': Compute the separation only;
C = 'T': Compute the norm of Theta only;
C = 'B': Compute both the separation and the norm of Theta.
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C LYAPUN CHARACTER*1
C Specifies whether or not the original Lyapunov equations
C should be solved, as follows:
C = 'O': Solve the original Lyapunov equations, updating
C the right-hand sides and solutions with the
C matrix U, e.g., X <-- U'*X*U;
C = 'R': Solve reduced Lyapunov equations only, without
C updating the right-hand sides and solutions.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A and X. N >= 0.
C
C T (input) DOUBLE PRECISION array, dimension (LDT,N)
C The leading N-by-N upper Hessenberg part of this array
C must contain the upper quasi-triangular matrix T in Schur
C canonical form from a Schur factorization of A.
C
C LDT INTEGER
C The leading dimension of array T. LDT >= MAX(1,N).
C
C U (input) DOUBLE PRECISION array, dimension (LDU,N)
C The leading N-by-N part of this array must contain the
C orthogonal matrix U from a real Schur factorization of A.
C If LYAPUN = 'R', the array U is not referenced.
C
C LDU INTEGER
C The leading dimension of array U.
C LDU >= 1, if LYAPUN = 'R';
C LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C XA (input) DOUBLE PRECISION array, dimension (LDXA,N)
C The leading N-by-N part of this array must contain the
C matrix product X*op(A), if LYAPUN = 'O', or U'*X*U*op(T),
C if LYAPUN = 'R', in the Lyapunov equation.
C If JOB = 'S', the array XA is not referenced.
C
C LDXA INTEGER
C The leading dimension of array XA.
C LDXA >= 1, if JOB = 'S';
C LDXA >= MAX(1,N), if JOB = 'T' or 'B'.
C
C SEPD (output) DOUBLE PRECISION
C If JOB = 'S' or JOB = 'B', and INFO >= 0, SEPD contains
C the estimated quantity sepd(op(A),op(A)').
C If JOB = 'T' or N = 0, SEPD is not referenced.
C
C THNORM (output) DOUBLE PRECISION
C If JOB = 'T' or JOB = 'B', and INFO >= 0, THNORM contains
C the estimated 1-norm of operator Theta.
C If JOB = 'S' or N = 0, THNORM is not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 0, if N = 0;
C LDWORK >= MAX(3,2*N*N), if N > 0.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = N+1: if T has (almost) reciprocal eigenvalues;
C perturbed values were used to solve Lyapunov
C equations (but the matrix T is unchanged).
C
C METHOD
C
C SEPD is defined as
C
C sepd( op(A), op(A)' ) = sigma_min( K )
C
C where sigma_min(K) is the smallest singular value of the
C N*N-by-N*N matrix
C
C K = kprod( op(A)', op(A)' ) - I(N**2).
C
C I(N**2) is an N*N-by-N*N identity matrix, and kprod denotes the
C Kronecker product. The routine estimates sigma_min(K) by the
C reciprocal of an estimate of the 1-norm of inverse(K), computed as
C suggested in [1]. This involves the solution of several discrete-
C time Lyapunov equations, either direct or transposed. The true
C reciprocal 1-norm of inverse(K) cannot differ from sigma_min(K) by
C more than a factor of N.
C The 1-norm of Theta is estimated similarly.
C
C REFERENCES
C
C [1] Higham, N.J.
C FORTRAN codes for estimating the one-norm of a real or
C complex matrix, with applications to condition estimation.
C ACM Trans. Math. Softw., 14, pp. 381-396, 1988.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C FURTHER COMMENTS
C
C When SEPD is zero, the routine returns immediately, with THNORM
C (if requested) not set. In this case, the equation is singular.
C The option LYAPUN = 'R' may occasionally produce slightly worse
C or better estimates, and it is much faster than the option 'O'.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Romania,
C Oct. 1998. Partly based on DDLSVX (and then SB03SD) by P. Petkov,
C Tech. University of Sofia, March 1998 (and December 1998).
C
C REVISIONS
C
C February 6, 1999, V. Sima, Katholieke Univ. Leuven, Belgium.
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2004.
C
C KEYWORDS
C
C Lyapunov equation, orthogonal transformation, real Schur form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, HALF
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
C ..
C .. Scalar Arguments ..
CHARACTER JOB, LYAPUN, TRANA
INTEGER INFO, LDT, LDU, LDWORK, LDXA, N
DOUBLE PRECISION SEPD, THNORM
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION DWORK( * ), T( LDT, * ), U( LDU, * ),
$ XA( LDXA, * )
C ..
C .. Local Scalars ..
LOGICAL NOTRNA, UPDATE, WANTS, WANTT
CHARACTER TRANAT, UPLO
INTEGER INFO2, ITMP, KASE, NN
DOUBLE PRECISION BIGNUM, EST, SCALE
C ..
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANSY
EXTERNAL DLAMCH, DLANSY, LSAME
C ..
C .. External Subroutines ..
EXTERNAL DLACON, DLACPY, DSCAL, DSYR2K, MA02ED, MB01RU,
$ SB03MX, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
WANTS = LSAME( JOB, 'S' )
WANTT = LSAME( JOB, 'T' )
NOTRNA = LSAME( TRANA, 'N' )
UPDATE = LSAME( LYAPUN, 'O' )
C
NN = N*N
INFO = 0
IF( .NOT. ( WANTS .OR. WANTT .OR. LSAME( JOB, 'B' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( NOTRNA .OR. LSAME( TRANA, 'T' ) .OR.
$ LSAME( TRANA, 'C' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDU.LT.1 .OR. ( UPDATE .AND. LDU.LT.N ) ) THEN
INFO = -8
ELSE IF( LDXA.LT.1 .OR. ( .NOT.WANTS .AND. LDXA.LT.N ) ) THEN
INFO = -10
ELSE IF( LDWORK.LT.0 .OR.
$ ( LDWORK.LT.MAX( 3, 2*NN ) .AND. N.GT.0 ) ) THEN
INFO = -15
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB03SY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 )
$ RETURN
C
ITMP = NN + 1
C
IF( NOTRNA ) THEN
TRANAT = 'T'
ELSE
TRANAT = 'N'
END IF
C
IF( .NOT.WANTT ) THEN
C
C Estimate sepd(op(A),op(A)').
C Workspace: max(3,2*N*N).
C
KASE = 0
C
C REPEAT
10 CONTINUE
CALL DLACON( NN, DWORK( ITMP ), DWORK, IWORK, EST, KASE )
IF( KASE.NE.0 ) THEN
C
C Select the triangular part of symmetric matrix to be used.
C
IF( DLANSY( '1-norm', 'Upper', N, DWORK, N, DWORK( ITMP ) )
$ .GE.
$ DLANSY( '1-norm', 'Lower', N, DWORK, N, DWORK( ITMP ) )
$ ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
C
IF( UPDATE ) THEN
C
C Transform the right-hand side: RHS := U'*RHS*U.
C
CALL MB01RU( UPLO, 'Transpose', N, N, ZERO, ONE, DWORK,
$ N, U, LDU, DWORK, N, DWORK( ITMP ), NN,
$ INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
END IF
CALL MA02ED( UPLO, N, DWORK, N )
C
IF( KASE.EQ.1 ) THEN
C
C Solve op(T)'*Y*op(T) - Y = scale*RHS.
C
CALL SB03MX( TRANA, N, T, LDT, DWORK, N, SCALE,
$ DWORK( ITMP ), INFO2 )
ELSE
C
C Solve op(T)*W*op(T)' - W = scale*RHS.
C
CALL SB03MX( TRANAT, N, T, LDT, DWORK, N, SCALE,
$ DWORK( ITMP ), INFO2 )
END IF
C
IF( INFO2.GT.0 )
$ INFO = N + 1
C
IF( UPDATE ) THEN
C
C Transform back to obtain the solution: Z := U*Z*U', with
C Z = Y or Z = W.
C
CALL MB01RU( UPLO, 'No transpose', N, N, ZERO, ONE,
$ DWORK, N, U, LDU, DWORK, N, DWORK( ITMP ),
$ NN, INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( UPLO, N, DWORK, N )
END IF
C
GO TO 10
END IF
C UNTIL KASE = 0
C
IF( EST.GT.SCALE ) THEN
SEPD = SCALE / EST
ELSE
BIGNUM = ONE / DLAMCH( 'Safe minimum' )
IF( SCALE.LT.EST*BIGNUM ) THEN
SEPD = SCALE / EST
ELSE
SEPD = BIGNUM
END IF
END IF
C
C Return if the equation is singular.
C
IF( SEPD.EQ.ZERO )
$ RETURN
END IF
C
IF( .NOT.WANTS ) THEN
C
C Estimate norm(Theta).
C Workspace: max(3,2*N*N).
C
KASE = 0
C
C REPEAT
20 CONTINUE
CALL DLACON( NN, DWORK( ITMP ), DWORK, IWORK, EST, KASE )
IF( KASE.NE.0 ) THEN
C
C Select the triangular part of symmetric matrix to be used.
C
IF( DLANSY( '1-norm', 'Upper', N, DWORK, N, DWORK( ITMP ) )
$ .GE.
$ DLANSY( '1-norm', 'Lower', N, DWORK, N, DWORK( ITMP ) )
$ ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( UPLO, N, DWORK, N )
C
C Compute RHS = op(W)'*X*op(A) + op(A)'*X*op(W).
C
CALL DSYR2K( UPLO, TRANAT, N, N, ONE, DWORK, N, XA, LDXA,
$ ZERO, DWORK( ITMP ), N )
CALL DLACPY( UPLO, N, N, DWORK( ITMP ), N, DWORK, N )
C
IF( UPDATE ) THEN
C
C Transform the right-hand side: RHS := U'*RHS*U.
C
CALL MB01RU( UPLO, 'Transpose', N, N, ZERO, ONE, DWORK,
$ N, U, LDU, DWORK, N, DWORK( ITMP ), NN,
$ INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
END IF
CALL MA02ED( UPLO, N, DWORK, N )
C
IF( KASE.EQ.1 ) THEN
C
C Solve op(T)'*Y*op(T) - Y = scale*RHS.
C
CALL SB03MX( TRANA, N, T, LDT, DWORK, N, SCALE,
$ DWORK( ITMP ), INFO2 )
ELSE
C
C Solve op(T)*W*op(T)' - W = scale*RHS.
C
CALL SB03MX( TRANAT, N, T, LDT, DWORK, N, SCALE,
$ DWORK( ITMP ), INFO2 )
END IF
C
IF( INFO2.GT.0 )
$ INFO = N + 1
C
IF( UPDATE ) THEN
C
C Transform back to obtain the solution: Z := U*Z*U', with
C Z = Y or Z = W.
C
CALL MB01RU( UPLO, 'No transpose', N, N, ZERO, ONE,
$ DWORK, N, U, LDU, DWORK, N, DWORK( ITMP ),
$ NN, INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( UPLO, N, DWORK, N )
END IF
C
GO TO 20
END IF
C UNTIL KASE = 0
C
IF( EST.LT.SCALE ) THEN
THNORM = EST / SCALE
ELSE
BIGNUM = ONE / DLAMCH( 'Safe minimum' )
IF( EST.LT.SCALE*BIGNUM ) THEN
THNORM = EST / SCALE
ELSE
THNORM = BIGNUM
END IF
END IF
END IF
C
RETURN
C *** Last line of SB03SY ***
END
|