File: SB03UD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (554 lines) | stat: -rw-r--r-- 21,006 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
      SUBROUTINE SB03UD( JOB, FACT, TRANA, UPLO, LYAPUN, N, SCALE, A,
     $                   LDA, T, LDT, U, LDU, C, LDC, X, LDX, SEPD,
     $                   RCOND, FERR, WR, WI, IWORK, DWORK, LDWORK,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To solve the real discrete-time Lyapunov matrix equation
C
C            op(A)'*X*op(A) - X = scale*C,
C
C     estimate the conditioning, and compute an error bound on the
C     solution X, where op(A) = A or A' (A**T), the matrix A is N-by-N,
C     the right hand side C and the solution X are N-by-N symmetric
C     matrices (C = C', X = X'), and scale is an output scale factor,
C     set less than or equal to 1 to avoid overflow in X.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'X':  Compute the solution only;
C             = 'S':  Compute the separation only;
C             = 'C':  Compute the reciprocal condition number only;
C             = 'E':  Compute the error bound only;
C             = 'A':  Compute all: the solution, separation, reciprocal
C                     condition number, and the error bound.
C
C     FACT    CHARACTER*1
C             Specifies whether or not the real Schur factorization
C             of the matrix A is supplied on entry, as follows:
C             = 'F':  On entry, T and U (if LYAPUN = 'O') contain the
C                     factors from the real Schur factorization of the
C                     matrix A;
C             = 'N':  The Schur factorization of A will be computed
C                     and the factors will be stored in T and U (if
C                     LYAPUN = 'O').
C
C     TRANA   CHARACTER*1
C             Specifies the form of op(A) to be used, as follows:
C             = 'N':  op(A) = A    (No transpose);
C             = 'T':  op(A) = A**T (Transpose);
C             = 'C':  op(A) = A**T (Conjugate transpose = Transpose).
C
C     UPLO    CHARACTER*1
C             Specifies which part of the symmetric matrix C is to be
C             used, as follows:
C             = 'U':  Upper triangular part;
C             = 'L':  Lower triangular part.
C
C     LYAPUN  CHARACTER*1
C             Specifies whether or not the original or "reduced"
C             Lyapunov equations should be solved, as follows:
C             = 'O':  Solve the original Lyapunov equations, updating
C                     the right-hand sides and solutions with the
C                     matrix U, e.g., X <-- U'*X*U;
C             = 'R':  Solve reduced Lyapunov equations only, without
C                     updating the right-hand sides and solutions.
C                     This means that a real Schur form T of A appears
C                     in the equation, instead of A.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A, X, and C.  N >= 0.
C
C     SCALE   (input or output) DOUBLE PRECISION
C             If JOB = 'C' or JOB = 'E', SCALE is an input argument:
C             the scale factor, set by a Lyapunov solver.
C             0 <= SCALE <= 1.
C             If JOB = 'X' or JOB = 'A', SCALE is an output argument:
C             the scale factor, scale, set less than or equal to 1 to
C             prevent the solution overflowing.
C             If JOB = 'S', this argument is not used.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             If FACT = 'N' or (LYAPUN = 'O' and JOB <> 'X'), the
C             leading N-by-N part of this array must contain the
C             original matrix A.
C             If FACT = 'F' and (LYAPUN = 'R' or JOB = 'X'), A is
C             not referenced.
C
C     LDA     INTEGER
C             The leading dimension of the array A.
C             LDA >= MAX(1,N), if FACT = 'N' or LYAPUN = 'O' and
C                                               JOB <> 'X';
C             LDA >= 1,        otherwise.
C
C     T       (input/output) DOUBLE PRECISION array, dimension
C             (LDT,N)
C             If FACT = 'F', then on entry the leading N-by-N upper
C             Hessenberg part of this array must contain the upper
C             quasi-triangular matrix T in Schur canonical form from a
C             Schur factorization of A.
C             If FACT = 'N', then this array need not be set on input.
C             On exit, (if INFO = 0 or INFO = N+1, for FACT = 'N') the
C             leading N-by-N upper Hessenberg part of this array
C             contains the upper quasi-triangular matrix T in Schur
C             canonical form from a Schur factorization of A.
C             The contents of array T is not modified if FACT = 'F'.
C
C     LDT     INTEGER
C             The leading dimension of the array T.  LDT >= MAX(1,N).
C
C     U       (input or output) DOUBLE PRECISION array, dimension
C             (LDU,N)
C             If LYAPUN = 'O' and FACT = 'F', then U is an input
C             argument and on entry, the leading N-by-N part of this
C             array must contain the orthogonal matrix U from a real
C             Schur factorization of A.
C             If LYAPUN = 'O' and FACT = 'N', then U is an output
C             argument and on exit, if INFO = 0 or INFO = N+1, it
C             contains the orthogonal N-by-N matrix from a real Schur
C             factorization of A.
C             If LYAPUN = 'R', the array U is not referenced.
C
C     LDU     INTEGER
C             The leading dimension of the array U.
C             LDU >= 1,        if LYAPUN = 'R';
C             LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             If JOB <> 'S' and UPLO = 'U', the leading N-by-N upper
C             triangular part of this array must contain the upper
C             triangular part of the matrix C of the original Lyapunov
C             equation (with matrix A), if LYAPUN = 'O', or of the
C             reduced Lyapunov equation (with matrix T), if
C             LYAPUN = 'R'.
C             If JOB <> 'S' and UPLO = 'L', the leading N-by-N lower
C             triangular part of this array must contain the lower
C             triangular part of the matrix C of the original Lyapunov
C             equation (with matrix A), if LYAPUN = 'O', or of the
C             reduced Lyapunov equation (with matrix T), if
C             LYAPUN = 'R'.
C             The remaining strictly triangular part of this array is
C             used as workspace.
C             If JOB = 'X', then this array may be identified with X
C             in the call of this routine.
C             If JOB = 'S', the array C is not referenced.
C
C     LDC     INTEGER
C             The leading dimension of the array C.
C             LDC >= 1,        if JOB = 'S';
C             LDC >= MAX(1,N), otherwise.
C
C     X       (input or output) DOUBLE PRECISION array, dimension
C             (LDX,N)
C             If JOB = 'C' or 'E', then X is an input argument and on
C             entry, the leading N-by-N part of this array must contain
C             the symmetric solution matrix X of the original Lyapunov
C             equation (with matrix A), if LYAPUN = 'O', or of the
C             reduced Lyapunov equation (with matrix T), if
C             LYAPUN = 'R'.
C             If JOB = 'X' or 'A', then X is an output argument and on
C             exit, if INFO = 0 or INFO = N+1, the leading N-by-N part
C             of this array contains the symmetric solution matrix X of
C             of the original Lyapunov equation (with matrix A), if
C             LYAPUN = 'O', or of the reduced Lyapunov equation (with
C             matrix T), if LYAPUN = 'R'.
C             If JOB = 'S', the array X is not referenced.
C
C     LDX     INTEGER
C             The leading dimension of the array X.
C             LDX >= 1,        if JOB = 'S';
C             LDX >= MAX(1,N), otherwise.
C
C     SEPD    (output) DOUBLE PRECISION
C             If JOB = 'S' or JOB = 'C' or JOB = 'A', and INFO = 0 or
C             INFO = N+1, SEPD contains the estimated separation of the
C             matrices op(A) and op(A)', sepd(op(A),op(A)').
C             If N = 0, or X = 0, or JOB = 'X' or JOB = 'E', SEPD is not
C             referenced.
C
C     RCOND   (output) DOUBLE PRECISION
C             If JOB = 'C' or JOB = 'A', an estimate of the reciprocal
C             condition number of the continuous-time Lyapunov equation.
C             If N = 0 or X = 0, RCOND is set to 1 or 0, respectively.
C             If JOB = 'X' or JOB = 'S' or JOB = 'E', RCOND is not
C             referenced.
C
C     FERR    (output) DOUBLE PRECISION
C             If JOB = 'E' or JOB = 'A', and INFO = 0 or INFO = N+1,
C             FERR contains an estimated forward error bound for the
C             solution X. If XTRUE is the true solution, FERR bounds the
C             relative error in the computed solution, measured in the
C             Frobenius norm:  norm(X - XTRUE)/norm(XTRUE).
C             If N = 0 or X = 0, FERR is set to 0.
C             If JOB = 'X' or JOB = 'S' or JOB = 'C', FERR is not
C             referenced.
C
C     WR      (output) DOUBLE PRECISION array, dimension (N)
C     WI      (output) DOUBLE PRECISION array, dimension (N)
C             If FACT = 'N', and INFO = 0 or INFO = N+1, WR and WI
C             contain the real and imaginary parts, respectively, of the
C             eigenvalues of A.
C             If FACT = 'F', WR and WI are not referenced.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N*N)
C             This array is not referenced if JOB = 'X'.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
C             optimal value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             If JOB = 'X', then
C             LDWORK >= MAX(1,N*N,2*N),       if FACT = 'F';
C             LDWORK >= MAX(1,N*N,3*N),       if FACT = 'N'.
C             If JOB = 'S', then
C             LDWORK >= MAX(3,2*N*N).
C             If JOB = 'C', then
C             LDWORK >= MAX(3,2*N*N) + N*N.
C             If JOB = 'E', or JOB = 'A', then
C             LDWORK >= MAX(3,2*N*N) + N*N + 2*N.
C             For optimum performance LDWORK should sometimes be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, i <= N, the QR algorithm failed to
C                   complete the reduction to Schur canonical form (see
C                   LAPACK Library routine DGEES); on exit, the matrix
C                   T(i+1:N,i+1:N) contains the partially converged
C                   Schur form, and the elements i+1:n of WR and WI
C                   contain the real and imaginary parts, respectively,
C                   of the converged eigenvalues; this error is unlikely
C                   to appear;
C             = N+1:  if the matrix T has almost reciprocal eigenvalues;
C                   perturbed values were used to solve Lyapunov
C                   equations, but the matrix T, if given (for
C                   FACT = 'F'), is unchanged.
C
C     METHOD
C
C     After reducing matrix A to real Schur canonical form (if needed),
C     a discrete-time version of the Bartels-Stewart algorithm is used.
C     A set of equivalent linear algebraic systems of equations of order
C     at most four are formed and solved using Gaussian elimination with
C     complete pivoting.
C
C     The condition number of the discrete-time Lyapunov equation is
C     estimated as
C
C     cond = (norm(Theta)*norm(A) + norm(inv(Omega))*norm(C))/norm(X),
C
C     where Omega and Theta are linear operators defined by
C
C     Omega(W) = op(A)'*W*op(A) - W,
C     Theta(W) = inv(Omega(op(W)'*X*op(A) + op(A)'*X*op(W))).
C
C     The routine estimates the quantities
C
C     sepd(op(A),op(A)') = 1 / norm(inv(Omega))
C
C     and norm(Theta) using 1-norm condition estimators.
C
C     The forward error bound is estimated using a practical error bound
C     similar to the one proposed in [3].
C
C     REFERENCES
C
C     [1] Barraud, A.Y.                   T
C         A numerical algorithm to solve A XA - X = Q.
C         IEEE Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
C
C     [2] Bartels, R.H. and Stewart, G.W.  T
C         Solution of the matrix equation A X + XB = C.
C         Comm. A.C.M., 15, pp. 820-826, 1972.
C
C     [3] Higham, N.J.
C         Perturbation theory and backward error for AX-XB=C.
C         BIT, vol. 33, pp. 124-136, 1993.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C     The accuracy of the estimates obtained depends on the solution
C     accuracy and on the properties of the 1-norm estimator.
C
C     FURTHER COMMENTS
C
C     The "separation" sepd of op(A) and op(A)' can also be defined as
C
C            sepd( op(A), op(A)' ) = sigma_min( T ),
C
C     where sigma_min(T) is the smallest singular value of the
C     N*N-by-N*N matrix
C
C        T = kprod( op(A)', op(A)' ) - I(N**2).
C
C     I(N**2) is an N*N-by-N*N identity matrix, and kprod denotes the
C     Kronecker product. The routine estimates sigma_min(T) by the
C     reciprocal of an estimate of the 1-norm of inverse(T). The true
C     reciprocal 1-norm of inverse(T) cannot differ from sigma_min(T) by
C     more than a factor of N.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, February 1999.
C     This is an extended and improved version of Release 3.0 routine
C     SB03PD.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Oct. 2004.
C
C     KEYWORDS
C
C     Lyapunov equation, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, HALF
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          FACT, JOB, LYAPUN, TRANA, UPLO
      INTEGER            INFO, LDA, LDC, LDT, LDU, LDWORK, LDX, N
      DOUBLE PRECISION   FERR, RCOND, SCALE, SEPD
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), DWORK( * ),
     $                   T( LDT, * ), U( LDU, * ), WI( * ), WR( * ),
     $                   X( LDX, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            JOBA, JOBC, JOBE, JOBS, JOBX, LOWER, NOFACT,
     $                   NOTRNA, UPDATE
      CHARACTER          CFACT, JOBL, SJOB
      INTEGER            LDW, NN, SDIM
      DOUBLE PRECISION   THNORM
C     ..
C     .. Local Arrays ..
      LOGICAL            BWORK( 1 )
C     ..
C     .. External Functions ..
      LOGICAL            LSAME, SELECT
      EXTERNAL           LSAME, SELECT
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGEES, DLACPY, DSCAL, MA02ED, MB01RU, SB03MX,
     $                   SB03SD, SB03SY, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX
C     ..
C     .. Executable Statements ..
C
C     Decode option parameters.
C
      JOBX   = LSAME( JOB,    'X' )
      JOBS   = LSAME( JOB,    'S' )
      JOBC   = LSAME( JOB,    'C' )
      JOBE   = LSAME( JOB,    'E' )
      JOBA   = LSAME( JOB,    'A' )
      NOFACT = LSAME( FACT,   'N' )
      NOTRNA = LSAME( TRANA,  'N' )
      LOWER  = LSAME( UPLO,   'L' )
      UPDATE = LSAME( LYAPUN, 'O' )
C
C     Compute workspace.
C
      NN = N*N
      IF( JOBX ) THEN
         IF( NOFACT ) THEN
            LDW = MAX( 1, NN, 3*N )
         ELSE
            LDW = MAX( 1, NN, 2*N )
         END IF
      ELSE IF( JOBS ) THEN
         LDW = MAX( 3, 2*NN )
      ELSE IF( JOBC ) THEN
         LDW = MAX( 3, 2*NN ) + NN
      ELSE
         LDW = MAX( 3, 2*NN ) + NN + 2*N
      END IF
C
C     Test the scalar input parameters.
C
      INFO = 0
      IF( .NOT.( JOBX .OR. JOBS .OR. JOBC .OR. JOBE .OR. JOBA ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( NOFACT .OR. LSAME( FACT,   'F' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( NOTRNA .OR. LSAME( TRANA,  'T' ) .OR.
     $                            LSAME( TRANA,  'C' ) ) ) THEN
         INFO = -3
      ELSE IF( .NOT.( LOWER  .OR. LSAME( UPLO,   'U' ) ) ) THEN
         INFO = -4
      ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
         INFO = -5
      ELSE IF( N.LT.0 ) THEN
         INFO = -6
      ELSE IF( ( JOBC .OR. JOBE ) .AND.
     $         ( SCALE.LT.ZERO .OR. SCALE.GT.ONE ) )THEN
         INFO = -7
      ELSE IF( LDA.LT.1 .OR.
     $       ( LDA.LT.N .AND. ( ( UPDATE .AND. .NOT.JOBX ) .OR.
     $                            NOFACT ) ) ) THEN
         INFO = -9
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDU.LT.1 .OR. ( LDU.LT.N .AND. UPDATE ) ) THEN
         INFO = -13
      ELSE IF( LDC.LT.1 .OR. ( .NOT.JOBS .AND. LDC.LT.N ) ) THEN
         INFO = -15
      ELSE IF( LDX.LT.1 .OR. ( .NOT.JOBS .AND. LDX.LT.N ) ) THEN
         INFO = -17
      ELSE IF( LDWORK.LT.LDW ) THEN
         INFO = -25
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB03UD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         IF( JOBX .OR. JOBA )
     $      SCALE = ONE
         IF( JOBC .OR. JOBA )
     $      RCOND = ONE
         IF( JOBE .OR. JOBA )
     $      FERR  = ZERO
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
      IF( NOFACT ) THEN
C
C        Compute the Schur factorization of A.
C        Workspace:  need   3*N;
C                    prefer larger.
C
         CALL DLACPY( 'Full', N, N, A, LDA, T, LDT )
         IF( UPDATE ) THEN
            SJOB = 'V'
         ELSE
            SJOB = 'N'
         END IF
         CALL DGEES( SJOB, 'Not ordered', SELECT, N, T, LDT, SDIM, WR,
     $               WI, U, LDU, DWORK, LDWORK, BWORK, INFO )
         IF( INFO.GT.0 )
     $      RETURN
         LDW = MAX( LDW, INT( DWORK( 1 ) ) )
         CFACT = 'F'
      ELSE
         CFACT = FACT
      END IF
C
      IF( JOBX .OR. JOBA ) THEN
C
C        Copy the right-hand side in X.
C
         CALL DLACPY( UPLO, N, N, C, LDC, X, LDX )
C
         IF( UPDATE ) THEN
C
C           Transform the right-hand side.
C           Workspace:  need   N*N.
C
            CALL MB01RU( UPLO, 'Transpose', N, N, ZERO, ONE, X, LDX, U,
     $                   LDU, X, LDX, DWORK, LDWORK, INFO )
            CALL DSCAL( N, HALF, X, LDX+1 )
         END IF
C
C        Fill in the remaining triangle of X.
C
         CALL MA02ED( UPLO, N, X, LDX )
C
C        Solve the transformed equation.
C        Workspace:  2*N.
C
         CALL SB03MX( TRANA, N, T, LDT, X, LDX, SCALE, DWORK, INFO )
         IF( INFO.GT.0 )
     $      INFO = N + 1
C
         IF( UPDATE ) THEN
C
C           Transform back the solution.
C
            CALL MB01RU( UPLO, 'No transpose', N, N, ZERO, ONE, X, LDX,
     $                   U, LDU, X, LDX, DWORK, LDWORK, INFO )
            CALL DSCAL( N, HALF, X, LDX+1 )
C
C           Fill in the remaining triangle of X.
C
            CALL MA02ED( UPLO, N, X, LDX )
         END IF
      END IF
C
      IF( JOBS ) THEN
C
C        Estimate sepd(op(A),op(A)').
C        Workspace:  MAX(3,2*N*N).
C
         CALL SB03SY( 'Separation', TRANA, LYAPUN, N, T, LDT, U, LDU,
     $                DWORK, 1, SEPD, THNORM, IWORK, DWORK, LDWORK,
     $                INFO )
C
      ELSE IF( .NOT.JOBX ) THEN
C
C        Estimate the reciprocal condition and/or the error bound.
C        Workspace:  MAX(3,2*N*N) + N*N + a*N, where:
C                    a = 2, if JOB = 'E' or JOB = 'A';
C                    a = 0, otherwise.
C
         IF( JOBA ) THEN
            JOBL = 'B'
         ELSE
            JOBL = JOB
         END IF
         CALL SB03SD( JOBL, CFACT, TRANA, UPLO, LYAPUN, N, SCALE, A,
     $                LDA, T, LDT, U, LDU, C, LDC, X, LDX, SEPD, RCOND,
     $                FERR, IWORK, DWORK, LDWORK, INFO )
         LDW = MAX( LDW, INT( DWORK( 1 ) ) )
      END IF
C
      DWORK( 1 ) = DBLE( LDW )
C
      RETURN
C *** Last line of SB03UD ***
      END