1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
SUBROUTINE SB03UD( JOB, FACT, TRANA, UPLO, LYAPUN, N, SCALE, A,
$ LDA, T, LDT, U, LDU, C, LDC, X, LDX, SEPD,
$ RCOND, FERR, WR, WI, IWORK, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve the real discrete-time Lyapunov matrix equation
C
C op(A)'*X*op(A) - X = scale*C,
C
C estimate the conditioning, and compute an error bound on the
C solution X, where op(A) = A or A' (A**T), the matrix A is N-by-N,
C the right hand side C and the solution X are N-by-N symmetric
C matrices (C = C', X = X'), and scale is an output scale factor,
C set less than or equal to 1 to avoid overflow in X.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the computation to be performed, as follows:
C = 'X': Compute the solution only;
C = 'S': Compute the separation only;
C = 'C': Compute the reciprocal condition number only;
C = 'E': Compute the error bound only;
C = 'A': Compute all: the solution, separation, reciprocal
C condition number, and the error bound.
C
C FACT CHARACTER*1
C Specifies whether or not the real Schur factorization
C of the matrix A is supplied on entry, as follows:
C = 'F': On entry, T and U (if LYAPUN = 'O') contain the
C factors from the real Schur factorization of the
C matrix A;
C = 'N': The Schur factorization of A will be computed
C and the factors will be stored in T and U (if
C LYAPUN = 'O').
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C UPLO CHARACTER*1
C Specifies which part of the symmetric matrix C is to be
C used, as follows:
C = 'U': Upper triangular part;
C = 'L': Lower triangular part.
C
C LYAPUN CHARACTER*1
C Specifies whether or not the original or "reduced"
C Lyapunov equations should be solved, as follows:
C = 'O': Solve the original Lyapunov equations, updating
C the right-hand sides and solutions with the
C matrix U, e.g., X <-- U'*X*U;
C = 'R': Solve reduced Lyapunov equations only, without
C updating the right-hand sides and solutions.
C This means that a real Schur form T of A appears
C in the equation, instead of A.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, X, and C. N >= 0.
C
C SCALE (input or output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'E', SCALE is an input argument:
C the scale factor, set by a Lyapunov solver.
C 0 <= SCALE <= 1.
C If JOB = 'X' or JOB = 'A', SCALE is an output argument:
C the scale factor, scale, set less than or equal to 1 to
C prevent the solution overflowing.
C If JOB = 'S', this argument is not used.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C If FACT = 'N' or (LYAPUN = 'O' and JOB <> 'X'), the
C leading N-by-N part of this array must contain the
C original matrix A.
C If FACT = 'F' and (LYAPUN = 'R' or JOB = 'X'), A is
C not referenced.
C
C LDA INTEGER
C The leading dimension of the array A.
C LDA >= MAX(1,N), if FACT = 'N' or LYAPUN = 'O' and
C JOB <> 'X';
C LDA >= 1, otherwise.
C
C T (input/output) DOUBLE PRECISION array, dimension
C (LDT,N)
C If FACT = 'F', then on entry the leading N-by-N upper
C Hessenberg part of this array must contain the upper
C quasi-triangular matrix T in Schur canonical form from a
C Schur factorization of A.
C If FACT = 'N', then this array need not be set on input.
C On exit, (if INFO = 0 or INFO = N+1, for FACT = 'N') the
C leading N-by-N upper Hessenberg part of this array
C contains the upper quasi-triangular matrix T in Schur
C canonical form from a Schur factorization of A.
C The contents of array T is not modified if FACT = 'F'.
C
C LDT INTEGER
C The leading dimension of the array T. LDT >= MAX(1,N).
C
C U (input or output) DOUBLE PRECISION array, dimension
C (LDU,N)
C If LYAPUN = 'O' and FACT = 'F', then U is an input
C argument and on entry, the leading N-by-N part of this
C array must contain the orthogonal matrix U from a real
C Schur factorization of A.
C If LYAPUN = 'O' and FACT = 'N', then U is an output
C argument and on exit, if INFO = 0 or INFO = N+1, it
C contains the orthogonal N-by-N matrix from a real Schur
C factorization of A.
C If LYAPUN = 'R', the array U is not referenced.
C
C LDU INTEGER
C The leading dimension of the array U.
C LDU >= 1, if LYAPUN = 'R';
C LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C If JOB <> 'S' and UPLO = 'U', the leading N-by-N upper
C triangular part of this array must contain the upper
C triangular part of the matrix C of the original Lyapunov
C equation (with matrix A), if LYAPUN = 'O', or of the
C reduced Lyapunov equation (with matrix T), if
C LYAPUN = 'R'.
C If JOB <> 'S' and UPLO = 'L', the leading N-by-N lower
C triangular part of this array must contain the lower
C triangular part of the matrix C of the original Lyapunov
C equation (with matrix A), if LYAPUN = 'O', or of the
C reduced Lyapunov equation (with matrix T), if
C LYAPUN = 'R'.
C The remaining strictly triangular part of this array is
C used as workspace.
C If JOB = 'X', then this array may be identified with X
C in the call of this routine.
C If JOB = 'S', the array C is not referenced.
C
C LDC INTEGER
C The leading dimension of the array C.
C LDC >= 1, if JOB = 'S';
C LDC >= MAX(1,N), otherwise.
C
C X (input or output) DOUBLE PRECISION array, dimension
C (LDX,N)
C If JOB = 'C' or 'E', then X is an input argument and on
C entry, the leading N-by-N part of this array must contain
C the symmetric solution matrix X of the original Lyapunov
C equation (with matrix A), if LYAPUN = 'O', or of the
C reduced Lyapunov equation (with matrix T), if
C LYAPUN = 'R'.
C If JOB = 'X' or 'A', then X is an output argument and on
C exit, if INFO = 0 or INFO = N+1, the leading N-by-N part
C of this array contains the symmetric solution matrix X of
C of the original Lyapunov equation (with matrix A), if
C LYAPUN = 'O', or of the reduced Lyapunov equation (with
C matrix T), if LYAPUN = 'R'.
C If JOB = 'S', the array X is not referenced.
C
C LDX INTEGER
C The leading dimension of the array X.
C LDX >= 1, if JOB = 'S';
C LDX >= MAX(1,N), otherwise.
C
C SEPD (output) DOUBLE PRECISION
C If JOB = 'S' or JOB = 'C' or JOB = 'A', and INFO = 0 or
C INFO = N+1, SEPD contains the estimated separation of the
C matrices op(A) and op(A)', sepd(op(A),op(A)').
C If N = 0, or X = 0, or JOB = 'X' or JOB = 'E', SEPD is not
C referenced.
C
C RCOND (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'A', an estimate of the reciprocal
C condition number of the continuous-time Lyapunov equation.
C If N = 0 or X = 0, RCOND is set to 1 or 0, respectively.
C If JOB = 'X' or JOB = 'S' or JOB = 'E', RCOND is not
C referenced.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'E' or JOB = 'A', and INFO = 0 or INFO = N+1,
C FERR contains an estimated forward error bound for the
C solution X. If XTRUE is the true solution, FERR bounds the
C relative error in the computed solution, measured in the
C Frobenius norm: norm(X - XTRUE)/norm(XTRUE).
C If N = 0 or X = 0, FERR is set to 0.
C If JOB = 'X' or JOB = 'S' or JOB = 'C', FERR is not
C referenced.
C
C WR (output) DOUBLE PRECISION array, dimension (N)
C WI (output) DOUBLE PRECISION array, dimension (N)
C If FACT = 'N', and INFO = 0 or INFO = N+1, WR and WI
C contain the real and imaginary parts, respectively, of the
C eigenvalues of A.
C If FACT = 'F', WR and WI are not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N*N)
C This array is not referenced if JOB = 'X'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
C optimal value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C If JOB = 'X', then
C LDWORK >= MAX(1,N*N,2*N), if FACT = 'F';
C LDWORK >= MAX(1,N*N,3*N), if FACT = 'N'.
C If JOB = 'S', then
C LDWORK >= MAX(3,2*N*N).
C If JOB = 'C', then
C LDWORK >= MAX(3,2*N*N) + N*N.
C If JOB = 'E', or JOB = 'A', then
C LDWORK >= MAX(3,2*N*N) + N*N + 2*N.
C For optimum performance LDWORK should sometimes be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, i <= N, the QR algorithm failed to
C complete the reduction to Schur canonical form (see
C LAPACK Library routine DGEES); on exit, the matrix
C T(i+1:N,i+1:N) contains the partially converged
C Schur form, and the elements i+1:n of WR and WI
C contain the real and imaginary parts, respectively,
C of the converged eigenvalues; this error is unlikely
C to appear;
C = N+1: if the matrix T has almost reciprocal eigenvalues;
C perturbed values were used to solve Lyapunov
C equations, but the matrix T, if given (for
C FACT = 'F'), is unchanged.
C
C METHOD
C
C After reducing matrix A to real Schur canonical form (if needed),
C a discrete-time version of the Bartels-Stewart algorithm is used.
C A set of equivalent linear algebraic systems of equations of order
C at most four are formed and solved using Gaussian elimination with
C complete pivoting.
C
C The condition number of the discrete-time Lyapunov equation is
C estimated as
C
C cond = (norm(Theta)*norm(A) + norm(inv(Omega))*norm(C))/norm(X),
C
C where Omega and Theta are linear operators defined by
C
C Omega(W) = op(A)'*W*op(A) - W,
C Theta(W) = inv(Omega(op(W)'*X*op(A) + op(A)'*X*op(W))).
C
C The routine estimates the quantities
C
C sepd(op(A),op(A)') = 1 / norm(inv(Omega))
C
C and norm(Theta) using 1-norm condition estimators.
C
C The forward error bound is estimated using a practical error bound
C similar to the one proposed in [3].
C
C REFERENCES
C
C [1] Barraud, A.Y. T
C A numerical algorithm to solve A XA - X = Q.
C IEEE Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
C
C [2] Bartels, R.H. and Stewart, G.W. T
C Solution of the matrix equation A X + XB = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [3] Higham, N.J.
C Perturbation theory and backward error for AX-XB=C.
C BIT, vol. 33, pp. 124-136, 1993.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C The accuracy of the estimates obtained depends on the solution
C accuracy and on the properties of the 1-norm estimator.
C
C FURTHER COMMENTS
C
C The "separation" sepd of op(A) and op(A)' can also be defined as
C
C sepd( op(A), op(A)' ) = sigma_min( T ),
C
C where sigma_min(T) is the smallest singular value of the
C N*N-by-N*N matrix
C
C T = kprod( op(A)', op(A)' ) - I(N**2).
C
C I(N**2) is an N*N-by-N*N identity matrix, and kprod denotes the
C Kronecker product. The routine estimates sigma_min(T) by the
C reciprocal of an estimate of the 1-norm of inverse(T). The true
C reciprocal 1-norm of inverse(T) cannot differ from sigma_min(T) by
C more than a factor of N.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, February 1999.
C This is an extended and improved version of Release 3.0 routine
C SB03PD.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2004.
C
C KEYWORDS
C
C Lyapunov equation, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, HALF
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
C ..
C .. Scalar Arguments ..
CHARACTER FACT, JOB, LYAPUN, TRANA, UPLO
INTEGER INFO, LDA, LDC, LDT, LDU, LDWORK, LDX, N
DOUBLE PRECISION FERR, RCOND, SCALE, SEPD
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), DWORK( * ),
$ T( LDT, * ), U( LDU, * ), WI( * ), WR( * ),
$ X( LDX, * )
C ..
C .. Local Scalars ..
LOGICAL JOBA, JOBC, JOBE, JOBS, JOBX, LOWER, NOFACT,
$ NOTRNA, UPDATE
CHARACTER CFACT, JOBL, SJOB
INTEGER LDW, NN, SDIM
DOUBLE PRECISION THNORM
C ..
C .. Local Arrays ..
LOGICAL BWORK( 1 )
C ..
C .. External Functions ..
LOGICAL LSAME, SELECT
EXTERNAL LSAME, SELECT
C ..
C .. External Subroutines ..
EXTERNAL DGEES, DLACPY, DSCAL, MA02ED, MB01RU, SB03MX,
$ SB03SD, SB03SY, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX
C ..
C .. Executable Statements ..
C
C Decode option parameters.
C
JOBX = LSAME( JOB, 'X' )
JOBS = LSAME( JOB, 'S' )
JOBC = LSAME( JOB, 'C' )
JOBE = LSAME( JOB, 'E' )
JOBA = LSAME( JOB, 'A' )
NOFACT = LSAME( FACT, 'N' )
NOTRNA = LSAME( TRANA, 'N' )
LOWER = LSAME( UPLO, 'L' )
UPDATE = LSAME( LYAPUN, 'O' )
C
C Compute workspace.
C
NN = N*N
IF( JOBX ) THEN
IF( NOFACT ) THEN
LDW = MAX( 1, NN, 3*N )
ELSE
LDW = MAX( 1, NN, 2*N )
END IF
ELSE IF( JOBS ) THEN
LDW = MAX( 3, 2*NN )
ELSE IF( JOBC ) THEN
LDW = MAX( 3, 2*NN ) + NN
ELSE
LDW = MAX( 3, 2*NN ) + NN + 2*N
END IF
C
C Test the scalar input parameters.
C
INFO = 0
IF( .NOT.( JOBX .OR. JOBS .OR. JOBC .OR. JOBE .OR. JOBA ) ) THEN
INFO = -1
ELSE IF( .NOT.( NOFACT .OR. LSAME( FACT, 'F' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( NOTRNA .OR. LSAME( TRANA, 'T' ) .OR.
$ LSAME( TRANA, 'C' ) ) ) THEN
INFO = -3
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -4
ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( ( JOBC .OR. JOBE ) .AND.
$ ( SCALE.LT.ZERO .OR. SCALE.GT.ONE ) )THEN
INFO = -7
ELSE IF( LDA.LT.1 .OR.
$ ( LDA.LT.N .AND. ( ( UPDATE .AND. .NOT.JOBX ) .OR.
$ NOFACT ) ) ) THEN
INFO = -9
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDU.LT.1 .OR. ( LDU.LT.N .AND. UPDATE ) ) THEN
INFO = -13
ELSE IF( LDC.LT.1 .OR. ( .NOT.JOBS .AND. LDC.LT.N ) ) THEN
INFO = -15
ELSE IF( LDX.LT.1 .OR. ( .NOT.JOBS .AND. LDX.LT.N ) ) THEN
INFO = -17
ELSE IF( LDWORK.LT.LDW ) THEN
INFO = -25
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB03UD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
IF( JOBX .OR. JOBA )
$ SCALE = ONE
IF( JOBC .OR. JOBA )
$ RCOND = ONE
IF( JOBE .OR. JOBA )
$ FERR = ZERO
DWORK( 1 ) = ONE
RETURN
END IF
C
IF( NOFACT ) THEN
C
C Compute the Schur factorization of A.
C Workspace: need 3*N;
C prefer larger.
C
CALL DLACPY( 'Full', N, N, A, LDA, T, LDT )
IF( UPDATE ) THEN
SJOB = 'V'
ELSE
SJOB = 'N'
END IF
CALL DGEES( SJOB, 'Not ordered', SELECT, N, T, LDT, SDIM, WR,
$ WI, U, LDU, DWORK, LDWORK, BWORK, INFO )
IF( INFO.GT.0 )
$ RETURN
LDW = MAX( LDW, INT( DWORK( 1 ) ) )
CFACT = 'F'
ELSE
CFACT = FACT
END IF
C
IF( JOBX .OR. JOBA ) THEN
C
C Copy the right-hand side in X.
C
CALL DLACPY( UPLO, N, N, C, LDC, X, LDX )
C
IF( UPDATE ) THEN
C
C Transform the right-hand side.
C Workspace: need N*N.
C
CALL MB01RU( UPLO, 'Transpose', N, N, ZERO, ONE, X, LDX, U,
$ LDU, X, LDX, DWORK, LDWORK, INFO )
CALL DSCAL( N, HALF, X, LDX+1 )
END IF
C
C Fill in the remaining triangle of X.
C
CALL MA02ED( UPLO, N, X, LDX )
C
C Solve the transformed equation.
C Workspace: 2*N.
C
CALL SB03MX( TRANA, N, T, LDT, X, LDX, SCALE, DWORK, INFO )
IF( INFO.GT.0 )
$ INFO = N + 1
C
IF( UPDATE ) THEN
C
C Transform back the solution.
C
CALL MB01RU( UPLO, 'No transpose', N, N, ZERO, ONE, X, LDX,
$ U, LDU, X, LDX, DWORK, LDWORK, INFO )
CALL DSCAL( N, HALF, X, LDX+1 )
C
C Fill in the remaining triangle of X.
C
CALL MA02ED( UPLO, N, X, LDX )
END IF
END IF
C
IF( JOBS ) THEN
C
C Estimate sepd(op(A),op(A)').
C Workspace: MAX(3,2*N*N).
C
CALL SB03SY( 'Separation', TRANA, LYAPUN, N, T, LDT, U, LDU,
$ DWORK, 1, SEPD, THNORM, IWORK, DWORK, LDWORK,
$ INFO )
C
ELSE IF( .NOT.JOBX ) THEN
C
C Estimate the reciprocal condition and/or the error bound.
C Workspace: MAX(3,2*N*N) + N*N + a*N, where:
C a = 2, if JOB = 'E' or JOB = 'A';
C a = 0, otherwise.
C
IF( JOBA ) THEN
JOBL = 'B'
ELSE
JOBL = JOB
END IF
CALL SB03SD( JOBL, CFACT, TRANA, UPLO, LYAPUN, N, SCALE, A,
$ LDA, T, LDT, U, LDU, C, LDC, X, LDX, SEPD, RCOND,
$ FERR, IWORK, DWORK, LDWORK, INFO )
LDW = MAX( LDW, INT( DWORK( 1 ) ) )
END IF
C
DWORK( 1 ) = DBLE( LDW )
C
RETURN
C *** Last line of SB03UD ***
END
|