1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
SUBROUTINE SB04MY( N, M, IND, A, LDA, B, LDB, C, LDC, D, IPR,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct and solve a linear algebraic system of order M whose
C coefficient matrix is in upper Hessenberg form. Such systems
C appear when solving Sylvester equations using the Hessenberg-Schur
C method.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix B. N >= 0.
C
C M (input) INTEGER
C The order of the matrix A. M >= 0.
C
C IND (input) INTEGER
C The index of the column in C to be computed. IND >= 1.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,M)
C The leading M-by-M part of this array must contain an
C upper Hessenberg matrix.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,N)
C The leading N-by-N part of this array must contain a
C matrix in real Schur form.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading M-by-N part of this array must
C contain the coefficient matrix C of the equation.
C On exit, the leading M-by-N part of this array contains
C the matrix C with column IND updated.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,M).
C
C Workspace
C
C D DOUBLE PRECISION array, dimension (M*(M+1)/2+2*M)
C
C IPR INTEGER array, dimension (2*M)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C > 0: if INFO = IND, a singular matrix was encountered.
C
C METHOD
C
C A special linear algebraic system of order M, with coefficient
C matrix in upper Hessenberg form is constructed and solved. The
C coefficient matrix is stored compactly, row-wise.
C
C REFERENCES
C
C [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C A Hessenberg-Schur method for the problem AX + XB = C.
C IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Supersedes Release 2.0 routine SB04AY by G. Golub, S. Nash, and
C C. Van Loan, Stanford University, California, United States of
C America, January 1982.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Scalar Arguments ..
INTEGER INFO, IND, LDA, LDB, LDC, M, N
C .. Array Arguments ..
INTEGER IPR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(*)
C .. Local Scalars ..
INTEGER I, I2, J, K, K1, K2, M1
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, SB04MW
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
DO 20 I = IND + 1, N
CALL DAXPY( M, -B(IND,I), C(1,I), 1, C(1,IND), 1 )
20 CONTINUE
C
M1 = M + 1
I2 = ( M*M1 )/2 + M1
K2 = 1
K = M
C
C Construct the linear algebraic system of order M.
C
DO 40 I = 1, M
J = M1 - K
CALL DCOPY ( K, A(I,J), LDA, D(K2), 1 )
K1 = K2
K2 = K2 + K
IF ( I.GT.1 ) THEN
K1 = K1 + 1
K = K - 1
END IF
D(K1) = D(K1) + B(IND,IND)
C
C Store the right hand side.
C
D(I2) = C(I,IND)
I2 = I2 + 1
40 CONTINUE
C
C Solve the linear algebraic system and store the solution in C.
C
CALL SB04MW( M, D, IPR, INFO )
C
IF ( INFO.NE.0 ) THEN
INFO = IND
ELSE
C
DO 60 I = 1, M
C(I,IND) = D(IPR(I))
60 CONTINUE
C
END IF
C
RETURN
C *** Last line of SB04MY ***
END
|