1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
SUBROUTINE SB04ND( ABSCHU, ULA, ULB, N, M, A, LDA, B, LDB, C,
$ LDC, TOL, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X the continuous-time Sylvester equation
C
C AX + XB = C,
C
C with at least one of the matrices A or B in Schur form and the
C other in Hessenberg or Schur form (both either upper or lower);
C A, B, C and X are N-by-N, M-by-M, N-by-M, and N-by-M matrices,
C respectively.
C
C ARGUMENTS
C
C Mode Parameters
C
C ABSCHU CHARACTER*1
C Indicates whether A and/or B is/are in Schur or
C Hessenberg form as follows:
C = 'A': A is in Schur form, B is in Hessenberg form;
C = 'B': B is in Schur form, A is in Hessenberg form;
C = 'S': Both A and B are in Schur form.
C
C ULA CHARACTER*1
C Indicates whether A is in upper or lower Schur form or
C upper or lower Hessenberg form as follows:
C = 'U': A is in upper Hessenberg form if ABSCHU = 'B' and
C upper Schur form otherwise;
C = 'L': A is in lower Hessenberg form if ABSCHU = 'B' and
C lower Schur form otherwise.
C
C ULB CHARACTER*1
C Indicates whether B is in upper or lower Schur form or
C upper or lower Hessenberg form as follows:
C = 'U': B is in upper Hessenberg form if ABSCHU = 'A' and
C upper Schur form otherwise;
C = 'L': B is in lower Hessenberg form if ABSCHU = 'A' and
C lower Schur form otherwise.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The order of the matrix B. M >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C coefficient matrix A of the equation.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading M-by-M part of this array must contain the
C coefficient matrix B of the equation.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,M).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,M)
C On entry, the leading N-by-M part of this array must
C contain the coefficient matrix C of the equation.
C On exit, if INFO = 0, the leading N-by-M part of this
C array contains the solution matrix X of the problem.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,N).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used to test for near singularity in
C the Sylvester equation. If the user sets TOL > 0, then the
C given value of TOL is used as a lower bound for the
C reciprocal condition number; a matrix whose estimated
C condition number is less than 1/TOL is considered to be
C nonsingular. If the user sets TOL <= 0, then a default
C tolerance, defined by TOLDEF = EPS, is used instead, where
C EPS is the machine precision (see LAPACK Library routine
C DLAMCH).
C This parameter is not referenced if ABSCHU = 'S',
C ULA = 'U', and ULB = 'U'.
C
C Workspace
C
C IWORK INTEGER array, dimension (2*MAX(M,N))
C This parameter is not referenced if ABSCHU = 'S',
C ULA = 'U', and ULB = 'U'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C This parameter is not referenced if ABSCHU = 'S',
C ULA = 'U', and ULB = 'U'.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK = 0, if ABSCHU = 'S', ULA = 'U', and ULB = 'U';
C LDWORK = 2*MAX(M,N)*(4 + 2*MAX(M,N)), otherwise.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if a (numerically) singular matrix T was encountered
C during the computation of the solution matrix X.
C That is, the estimated reciprocal condition number
C of T is less than or equal to TOL.
C
C METHOD
C
C Matrices A and B are assumed to be in (upper or lower) Hessenberg
C or Schur form (with at least one of them in Schur form). The
C solution matrix X is then computed by rows or columns via the back
C substitution scheme proposed by Golub, Nash and Van Loan (see
C [1]), which involves the solution of triangular systems of
C equations that are constructed recursively and which may be nearly
C singular if A and -B have close eigenvalues. If near singularity
C is detected, then the routine returns with the Error Indicator
C (INFO) set to 1.
C
C REFERENCES
C
C [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C A Hessenberg-Schur method for the problem AX + XB = C.
C IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C NUMERICAL ASPECTS
C 2 2
C The algorithm requires approximately 5M N + 0.5MN operations in
C 2 2
C the worst case and 2.5M N + 0.5MN operations in the best case
C (where M is the order of the matrix in Hessenberg form and N is
C the order of the matrix in Schur form) and is mixed stable (see
C [1]).
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C Supersedes Release 2.0 routine SB04BD by M. Vanbegin, and
C P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2000.
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER ABSCHU, ULA, ULB
INTEGER INFO, LDA, LDB, LDC, LDWORK, M, N
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*)
C .. Local Scalars ..
CHARACTER ABSCHR
LOGICAL LABSCB, LABSCS, LULA, LULB
INTEGER FWD, I, IBEG, IEND, INCR, IPINCR, ISTEP, JWORK,
$ LDW, MAXMN
DOUBLE PRECISION SCALE, TOL1
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DTRSYL, SB04NV, SB04NW, SB04NX, SB04NY,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
INFO = 0
MAXMN = MAX( M, N )
LABSCB = LSAME( ABSCHU, 'B' )
LABSCS = LSAME( ABSCHU, 'S' )
LULA = LSAME( ULA, 'U' )
LULB = LSAME( ULB, 'U' )
C
C Test the input scalar arguments.
C
IF( .NOT.LABSCB .AND. .NOT.LABSCS .AND.
$ .NOT.LSAME( ABSCHU, 'A' ) ) THEN
INFO = -1
ELSE IF( .NOT.LULA .AND. .NOT.LSAME( ULA, 'L' ) ) THEN
INFO = -2
ELSE IF( .NOT.LULB .AND. .NOT.LSAME( ULB, 'L' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDWORK.LT.0 .OR. ( .NOT.( LABSCS .AND. LULA .AND. LULB )
$ .AND. LDWORK.LT.2*MAXMN*( 4 + 2*MAXMN ) ) ) THEN
INFO = -15
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB04ND', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MAXMN.EQ.0 )
$ RETURN
C
IF ( LABSCS .AND. LULA .AND. LULB ) THEN
C
C If both matrices are in a real Schur form, use DTRSYL.
C
CALL DTRSYL( 'NoTranspose', 'NoTranspose', 1, N, M, A, LDA, B,
$ LDB, C, LDC, SCALE, INFO )
IF ( SCALE.NE.ONE )
$ INFO = 1
RETURN
END IF
C
LDW = 2*MAXMN
JWORK = LDW*LDW + 3*LDW + 1
TOL1 = TOL
IF ( TOL1.LE.ZERO )
$ TOL1 = DLAMCH( 'Epsilon' )
C
C Choose the smallest of both matrices as the one in Hessenberg
C form when possible.
C
ABSCHR = ABSCHU
IF ( LABSCS ) THEN
IF ( N.GT.M ) THEN
ABSCHR = 'A'
ELSE
ABSCHR = 'B'
END IF
END IF
IF ( LSAME( ABSCHR, 'B' ) ) THEN
C
C B is in Schur form: recursion on the columns of B.
C
IF ( LULB ) THEN
C
C B is upper: forward recursion.
C
IBEG = 1
IEND = M
FWD = 1
INCR = 0
ELSE
C
C B is lower: backward recursion.
C
IBEG = M
IEND = 1
FWD = -1
INCR = -1
END IF
I = IBEG
C WHILE ( ( IEND - I ) * FWD .GE. 0 ) DO
20 IF ( ( IEND - I )*FWD.GE.0 ) THEN
C
C Test for 1-by-1 or 2-by-2 diagonal block in the Schur
C form.
C
IF ( I.EQ.IEND ) THEN
ISTEP = 1
ELSE
IF ( B(I+FWD,I).EQ.ZERO ) THEN
ISTEP = 1
ELSE
ISTEP = 2
END IF
END IF
C
IF ( ISTEP.EQ.1 ) THEN
CALL SB04NW( ABSCHR, ULB, N, M, C, LDC, I, B, LDB,
$ DWORK(JWORK) )
CALL SB04NY( 'R', ULA, N, A, LDA, B(I,I), DWORK(JWORK),
$ TOL1, IWORK, DWORK, LDW, INFO )
IF ( INFO.EQ.1 )
$ RETURN
CALL DCOPY( N, DWORK(JWORK), 1, C(1,I), 1 )
ELSE
IPINCR = I + INCR
CALL SB04NV( ABSCHR, ULB, N, M, C, LDC, IPINCR, B, LDB,
$ DWORK(JWORK) )
CALL SB04NX( 'R', ULA, N, A, LDA, B(IPINCR,IPINCR),
$ B(IPINCR+1,IPINCR), B(IPINCR,IPINCR+1),
$ B(IPINCR+1,IPINCR+1), DWORK(JWORK), TOL1,
$ IWORK, DWORK, LDW, INFO )
IF ( INFO.EQ.1 )
$ RETURN
CALL DCOPY( N, DWORK(JWORK), 2, C(1,IPINCR), 1 )
CALL DCOPY( N, DWORK(JWORK+1), 2, C(1,IPINCR+1), 1 )
END IF
I = I + FWD*ISTEP
GO TO 20
END IF
C END WHILE 20
ELSE
C
C A is in Schur form: recursion on the rows of A.
C
IF ( LULA ) THEN
C
C A is upper: backward recursion.
C
IBEG = N
IEND = 1
FWD = -1
INCR = -1
ELSE
C
C A is lower: forward recursion.
C
IBEG = 1
IEND = N
FWD = 1
INCR = 0
END IF
I = IBEG
C WHILE ( ( IEND - I ) * FWD .GE. 0 ) DO
40 IF ( ( IEND - I )*FWD.GE.0 ) THEN
C
C Test for 1-by-1 or 2-by-2 diagonal block in the Schur
C form.
C
IF ( I.EQ.IEND ) THEN
ISTEP = 1
ELSE
IF ( A(I,I+FWD).EQ.ZERO ) THEN
ISTEP = 1
ELSE
ISTEP = 2
END IF
END IF
C
IF ( ISTEP.EQ.1 ) THEN
CALL SB04NW( ABSCHR, ULA, N, M, C, LDC, I, A, LDA,
$ DWORK(JWORK) )
CALL SB04NY( 'C', ULB, M, B, LDB, A(I,I), DWORK(JWORK),
$ TOL1, IWORK, DWORK, LDW, INFO )
IF ( INFO.EQ.1 )
$ RETURN
CALL DCOPY( M, DWORK(JWORK), 1, C(I,1), LDC )
ELSE
IPINCR = I + INCR
CALL SB04NV( ABSCHR, ULA, N, M, C, LDC, IPINCR, A, LDA,
$ DWORK(JWORK) )
CALL SB04NX( 'C', ULB, M, B, LDB, A(IPINCR,IPINCR),
$ A(IPINCR+1,IPINCR), A(IPINCR,IPINCR+1),
$ A(IPINCR+1,IPINCR+1), DWORK(JWORK), TOL1,
$ IWORK, DWORK, LDW, INFO )
IF ( INFO.EQ.1 )
$ RETURN
CALL DCOPY( M, DWORK(JWORK), 2, C(IPINCR,1), LDC )
CALL DCOPY( M, DWORK(JWORK+1), 2, C(IPINCR+1,1), LDC )
END IF
I = I + FWD*ISTEP
GO TO 40
END IF
C END WHILE 40
END IF
C
RETURN
C *** Last line of SB04ND ***
END
|