1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
SUBROUTINE SB04NV( ABSCHR, UL, N, M, C, LDC, INDX, AB, LDAB, D )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct the right-hand sides D for a system of equations in
C Hessenberg form solved via SB04NX (case with 2 right-hand sides).
C
C ARGUMENTS
C
C Mode Parameters
C
C ABSCHR CHARACTER*1
C Indicates whether AB contains A or B, as follows:
C = 'A': AB contains A;
C = 'B': AB contains B.
C
C UL CHARACTER*1
C Indicates whether AB is upper or lower Hessenberg matrix,
C as follows:
C = 'U': AB is upper Hessenberg;
C = 'L': AB is lower Hessenberg.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The order of the matrix B. M >= 0.
C
C C (input) DOUBLE PRECISION array, dimension (LDC,M)
C The leading N-by-M part of this array must contain both
C the not yet modified part of the coefficient matrix C of
C the Sylvester equation AX + XB = C, and both the currently
C computed part of the solution of the Sylvester equation.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,N).
C
C INDX (input) INTEGER
C The position of the first column/row of C to be used in
C the construction of the right-hand side D.
C
C AB (input) DOUBLE PRECISION array, dimension (LDAB,*)
C The leading N-by-N or M-by-M part of this array must
C contain either A or B of the Sylvester equation
C AX + XB = C.
C
C LDAB INTEGER
C The leading dimension of array AB.
C LDAB >= MAX(1,N) or LDAB >= MAX(1,M) (depending on
C ABSCHR = 'A' or ABSCHR = 'B', respectively).
C
C D (output) DOUBLE PRECISION array, dimension (*)
C The leading 2*N or 2*M part of this array (depending on
C ABSCHR = 'B' or ABSCHR = 'A', respectively) contains the
C right-hand side stored as a matrix with two rows.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C Supersedes Release 2.0 routine SB04BV by M. Vanbegin, and
C P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER ABSCHR, UL
INTEGER INDX, LDAB, LDC, M, N
C .. Array Arguments ..
DOUBLE PRECISION AB(LDAB,*), C(LDC,*), D(*)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMV
C .. Executable Statements ..
C
C For speed, no tests on the input scalar arguments are made.
C Quick return if possible.
C
IF ( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
C
IF ( LSAME( ABSCHR, 'B' ) ) THEN
C
C Construct the 2 columns of the right-hand side.
C
CALL DCOPY( N, C(1,INDX), 1, D(1), 2 )
CALL DCOPY( N, C(1,INDX+1), 1, D(2), 2 )
IF ( LSAME( UL, 'U' ) ) THEN
IF ( INDX.GT.1 ) THEN
CALL DGEMV( 'N', N, INDX-1, -ONE, C, LDC, AB(1,INDX), 1,
$ ONE, D(1), 2 )
CALL DGEMV( 'N', N, INDX-1, -ONE, C, LDC, AB(1,INDX+1),
$ 1, ONE, D(2), 2 )
END IF
ELSE
IF ( INDX.LT.M-1 ) THEN
CALL DGEMV( 'N', N, M-INDX-1, -ONE, C(1,INDX+2), LDC,
$ AB(INDX+2,INDX), 1, ONE, D(1), 2 )
CALL DGEMV( 'N', N, M-INDX-1, -ONE, C(1,INDX+2), LDC,
$ AB(INDX+2,INDX+1), 1, ONE, D(2), 2 )
END IF
END IF
ELSE
C
C Construct the 2 rows of the right-hand side.
C
CALL DCOPY( M, C(INDX,1), LDC, D(1), 2 )
CALL DCOPY( M, C(INDX+1,1), LDC, D(2), 2 )
IF ( LSAME( UL, 'U' ) ) THEN
IF ( INDX.LT.N-1 ) THEN
CALL DGEMV( 'T', N-INDX-1, M, -ONE, C(INDX+2,1), LDC,
$ AB(INDX,INDX+2), LDAB, ONE, D(1), 2 )
CALL DGEMV( 'T', N-INDX-1, M, -ONE, C(INDX+2,1), LDC,
$ AB(INDX+1,INDX+2), LDAB, ONE, D(2), 2 )
END IF
ELSE
IF ( INDX.GT.1 ) THEN
CALL DGEMV( 'T', INDX-1, M, -ONE, C, LDC, AB(INDX,1),
$ LDAB, ONE, D(1), 2 )
CALL DGEMV( 'T', INDX-1, M, -ONE, C, LDC, AB(INDX+1,1),
$ LDAB, ONE, D(2), 2 )
END IF
END IF
END IF
C
RETURN
C *** Last line of SB04NV ***
END
|