File: SB04NV.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (165 lines) | stat: -rw-r--r-- 5,795 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      SUBROUTINE SB04NV( ABSCHR, UL, N, M, C, LDC, INDX, AB, LDAB, D )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To construct the right-hand sides D for a system of equations in
C     Hessenberg form solved via SB04NX (case with 2 right-hand sides).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     ABSCHR  CHARACTER*1
C             Indicates whether AB contains A or B, as follows:
C             = 'A':  AB contains A;
C             = 'B':  AB contains B.
C
C     UL      CHARACTER*1
C             Indicates whether AB is upper or lower Hessenberg matrix,
C             as follows:
C             = 'U':  AB is upper Hessenberg;
C             = 'L':  AB is lower Hessenberg.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The order of the matrix B.  M >= 0.
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,M)
C             The leading N-by-M part of this array must contain both
C             the not yet modified part of the coefficient matrix C of
C             the Sylvester equation AX + XB = C, and both the currently
C             computed part of the solution of the Sylvester equation.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,N).
C
C     INDX    (input) INTEGER
C             The position of the first column/row of C to be used in
C             the construction of the right-hand side D.
C
C     AB      (input) DOUBLE PRECISION array, dimension (LDAB,*)
C             The leading N-by-N or M-by-M part of this array must
C             contain either A or B of the Sylvester equation
C             AX + XB = C.
C
C     LDAB    INTEGER
C             The leading dimension of array AB.
C             LDAB >= MAX(1,N) or LDAB >= MAX(1,M) (depending on
C             ABSCHR = 'A' or ABSCHR = 'B', respectively).
C
C     D       (output) DOUBLE PRECISION array, dimension (*)
C             The leading 2*N or 2*M part of this array (depending on
C             ABSCHR = 'B' or ABSCHR = 'A', respectively) contains the
C             right-hand side stored as a matrix with two rows.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C     Supersedes Release 2.0 routine SB04BV by M. Vanbegin, and
C     P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Hessenberg form, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE
      PARAMETER         ( ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         ABSCHR, UL
      INTEGER           INDX, LDAB, LDC, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  AB(LDAB,*), C(LDC,*), D(*)
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMV
C     .. Executable Statements ..
C
C     For speed, no tests on the input scalar arguments are made.
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
C
      IF ( LSAME( ABSCHR, 'B' ) ) THEN
C
C        Construct the 2 columns of the right-hand side.
C
         CALL DCOPY( N, C(1,INDX), 1, D(1), 2 )
         CALL DCOPY( N, C(1,INDX+1), 1, D(2), 2 )
         IF ( LSAME( UL, 'U' ) ) THEN
            IF ( INDX.GT.1 ) THEN
               CALL DGEMV( 'N', N, INDX-1, -ONE, C, LDC, AB(1,INDX), 1,
     $                     ONE, D(1), 2 )
               CALL DGEMV( 'N', N, INDX-1, -ONE, C, LDC, AB(1,INDX+1),
     $                     1, ONE, D(2), 2 )
            END IF
         ELSE
            IF ( INDX.LT.M-1 ) THEN
               CALL DGEMV( 'N', N, M-INDX-1, -ONE, C(1,INDX+2), LDC,
     $                    AB(INDX+2,INDX), 1, ONE, D(1), 2 )
               CALL DGEMV( 'N', N, M-INDX-1, -ONE, C(1,INDX+2), LDC,
     $                    AB(INDX+2,INDX+1), 1, ONE, D(2), 2 )
            END IF
         END IF
      ELSE
C
C        Construct the 2 rows of the right-hand side.
C
         CALL DCOPY( M, C(INDX,1), LDC, D(1), 2 )
         CALL DCOPY( M, C(INDX+1,1), LDC, D(2), 2 )
         IF ( LSAME( UL, 'U' ) ) THEN
            IF ( INDX.LT.N-1 ) THEN
               CALL DGEMV( 'T', N-INDX-1, M, -ONE, C(INDX+2,1), LDC,
     $                    AB(INDX,INDX+2), LDAB, ONE, D(1), 2 )
               CALL DGEMV( 'T', N-INDX-1, M, -ONE, C(INDX+2,1), LDC,
     $                    AB(INDX+1,INDX+2), LDAB, ONE, D(2), 2 )
            END IF
         ELSE
            IF ( INDX.GT.1 ) THEN
               CALL DGEMV( 'T', INDX-1, M, -ONE, C, LDC, AB(INDX,1),
     $                     LDAB, ONE, D(1), 2 )
               CALL DGEMV( 'T', INDX-1, M, -ONE, C, LDC, AB(INDX+1,1),
     $                     LDAB, ONE, D(2), 2 )
            END IF
         END IF
      END IF
C
      RETURN
C *** Last line of SB04NV ***
      END