1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
|
SUBROUTINE SB04OD( REDUCE, TRANS, JOBD, M, N, A, LDA, B, LDB, C,
$ LDC, D, LDD, E, LDE, F, LDF, SCALE, DIF, P,
$ LDP, Q, LDQ, U, LDU, V, LDV, IWORK, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for R and L one of the generalized Sylvester equations
C
C A * R - L * B = scale * C )
C ) (1)
C D * R - L * E = scale * F )
C
C or
C
C A' * R + D' * L = scale * C )
C ) (2)
C R * B' + L * E' = scale * (-F) )
C
C where A and D are M-by-M matrices, B and E are N-by-N matrices and
C C, F, R and L are M-by-N matrices.
C
C The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an
C output scaling factor chosen to avoid overflow.
C
C The routine also optionally computes a Dif estimate, which
C measures the separation of the spectrum of the matrix pair (A,D)
C from the spectrum of the matrix pair (B,E), Dif[(A,D),(B,E)].
C
C ARGUMENTS
C
C MODE PARAMETERS
C
C REDUCE CHARACTER*1
C Indicates whether the matrix pairs (A,D) and/or (B,E) are
C to be reduced to generalized Schur form as follows:
C = 'R': The matrix pairs (A,D) and (B,E) are to be reduced
C to generalized (real) Schur canonical form;
C = 'A': The matrix pair (A,D) only is to be reduced
C to generalized (real) Schur canonical form,
C and the matrix pair (B,E) already is in this form;
C = 'B': The matrix pair (B,E) only is to be reduced
C to generalized (real) Schur canonical form,
C and the matrix pair (A,D) already is in this form;
C = 'N': The matrix pairs (A,D) and (B,E) are already in
C generalized (real) Schur canonical form, as
C produced by LAPACK routine DGEES.
C
C TRANS CHARACTER*1
C Indicates which of the equations, (1) or (2), is to be
C solved as follows:
C = 'N': The generalized Sylvester equation (1) is to be
C solved;
C = 'T': The "transposed" generalized Sylvester equation
C (2) is to be solved.
C
C JOBD CHARACTER*1
C Indicates whether the Dif estimator is to be computed as
C follows:
C = '1': Only the one-norm-based Dif estimate is computed
C and stored in DIF;
C = '2': Only the Frobenius norm-based Dif estimate is
C computed and stored in DIF;
C = 'D': The equation (1) is solved and the one-norm-based
C Dif estimate is computed and stored in DIF;
C = 'F': The equation (1) is solved and the Frobenius norm-
C based Dif estimate is computed and stored in DIF;
C = 'N': The Dif estimator is not required and hence DIF is
C not referenced. (Solve either (1) or (2) only.)
C JOBD is not referenced if TRANS = 'T'.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The order of the matrices A and D and the number of rows
C of the matrices C, F, R and L. M >= 0.
C
C N (input) INTEGER
C The order of the matrices B and E and the number of
C columns of the matrices C, F, R and L. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
C On entry, the leading M-by-M part of this array must
C contain the coefficient matrix A of the equation; A must
C be in upper quasi-triangular form if REDUCE = 'B' or 'N'.
C On exit, the leading M-by-M part of this array contains
C the upper quasi-triangular form of A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C On entry, the leading N-by-N part of this array must
C contain the coefficient matrix B of the equation; B must
C be in upper quasi-triangular form if REDUCE = 'A' or 'N'.
C On exit, the leading N-by-N part of this array contains
C the upper quasi-triangular form of B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading M-by-N part of this array must
C contain the right-hand side matrix C of the first equation
C in (1) or (2).
C On exit, if JOBD = 'N', 'D' or 'F', the leading M-by-N
C part of this array contains the solution matrix R of the
C problem; if JOBD = '1' or '2' and TRANS = 'N', the leading
C M-by-N part of this array contains the solution matrix R
C achieved during the computation of the Dif estimate.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,M).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading M-by-M part of this array must
C contain the coefficient matrix D of the equation; D must
C be in upper triangular form if REDUCE = 'B' or 'N'.
C On exit, the leading M-by-M part of this array contains
C the upper triangular form of D.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,M).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, the leading N-by-N part of this array must
C contain the coefficient matrix E of the equation; E must
C be in upper triangular form if REDUCE = 'A' or 'N'.
C On exit, the leading N-by-N part of this array contains
C the upper triangular form of E.
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,N).
C
C F (input/output) DOUBLE PRECISION array, dimension (LDF,N)
C On entry, the leading M-by-N part of this array must
C contain the right-hand side matrix F of the second
C equation in (1) or (2).
C On exit, if JOBD = 'N', 'D' or 'F', the leading M-by-N
C part of this array contains the solution matrix L of the
C problem; if JOBD = '1' or '2' and TRANS = 'N', the leading
C M-by-N part of this array contains the solution matrix L
C achieved during the computation of the Dif estimate.
C
C LDF INTEGER
C The leading dimension of array F. LDF >= MAX(1,M).
C
C SCALE (output) DOUBLE PRECISION
C The scaling factor in (1) or (2). If 0 < SCALE < 1, C and
C F hold the solutions R and L, respectively, to a slightly
C perturbed system (but the input or computed generalized
C (real) Schur canonical form matrices A, B, D, and E
C have not been changed). If SCALE = 0, C and F hold the
C solutions R and L, respectively, to the homogeneous system
C with C = F = 0. Normally, SCALE = 1.
C
C DIF (output) DOUBLE PRECISION
C If TRANS = 'N' and JOBD <> 'N', then DIF contains the
C value of the Dif estimator, which is an upper bound of
C -1
C Dif[(A,D),(B,E)] = sigma_min(Z) = 1/||Z ||, in either the
C one-norm, or Frobenius norm, respectively (see METHOD).
C Otherwise, DIF is not referenced.
C
C P (output) DOUBLE PRECISION array, dimension (LDP,*)
C If REDUCE = 'R' or 'A', then the leading M-by-M part of
C this array contains the (left) transformation matrix used
C to reduce (A,D) to generalized Schur form.
C Otherwise, P is not referenced and can be supplied as a
C dummy array (i.e. set parameter LDP = 1 and declare this
C array to be P(1,1) in the calling program).
C
C LDP INTEGER
C The leading dimension of array P.
C LDP >= MAX(1,M) if REDUCE = 'R' or 'A',
C LDP >= 1 if REDUCE = 'B' or 'N'.
C
C Q (output) DOUBLE PRECISION array, dimension (LDQ,*)
C If REDUCE = 'R' or 'A', then the leading M-by-M part of
C this array contains the (right) transformation matrix used
C to reduce (A,D) to generalized Schur form.
C Otherwise, Q is not referenced and can be supplied as a
C dummy array (i.e. set parameter LDQ = 1 and declare this
C array to be Q(1,1) in the calling program).
C
C LDQ INTEGER
C The leading dimension of array Q.
C LDQ >= MAX(1,M) if REDUCE = 'R' or 'A',
C LDQ >= 1 if REDUCE = 'B' or 'N'.
C
C U (output) DOUBLE PRECISION array, dimension (LDU,*)
C If REDUCE = 'R' or 'B', then the leading N-by-N part of
C this array contains the (left) transformation matrix used
C to reduce (B,E) to generalized Schur form.
C Otherwise, U is not referenced and can be supplied as a
C dummy array (i.e. set parameter LDU = 1 and declare this
C array to be U(1,1) in the calling program).
C
C LDU INTEGER
C The leading dimension of array U.
C LDU >= MAX(1,N) if REDUCE = 'R' or 'B',
C LDU >= 1 if REDUCE = 'A' or 'N'.
C
C V (output) DOUBLE PRECISION array, dimension (LDV,*)
C If REDUCE = 'R' or 'B', then the leading N-by-N part of
C this array contains the (right) transformation matrix used
C to reduce (B,E) to generalized Schur form.
C Otherwise, V is not referenced and can be supplied as a
C dummy array (i.e. set parameter LDV = 1 and declare this
C array to be V(1,1) in the calling program).
C
C LDV INTEGER
C The leading dimension of array V.
C LDV >= MAX(1,N) if REDUCE = 'R' or 'B',
C LDV >= 1 if REDUCE = 'A' or 'N'.
C
C Workspace
C
C IWORK INTEGER array, dimension (M+N+6)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C If TRANS = 'N' and JOBD = 'D' or 'F', then
C LDWORK = MAX(1,7*M,7*N,2*M*N) if REDUCE = 'R';
C LDWORK = MAX(1,7*M,2*M*N) if REDUCE = 'A';
C LDWORK = MAX(1,7*N,2*M*N) if REDUCE = 'B';
C LDWORK = MAX(1,2*M*N) if REDUCE = 'N'.
C Otherwise, the term 2*M*N above should be omitted.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if REDUCE <> 'N' and either (A,D) and/or (B,E)
C cannot be reduced to generalized Schur form;
C = 2: if REDUCE = 'N' and either A or B is not in
C upper quasi-triangular form;
C = 3: if a singular matrix was encountered during the
C computation of the solution matrices R and L, that
C is (A,D) and (B,E) have common or close eigenvalues.
C
C METHOD
C
C For the case TRANS = 'N', and REDUCE = 'R' or 'N', the algorithm
C used by the routine consists of four steps (see [1] and [2]) as
C follows:
C
C (a) if REDUCE = 'R', then the matrix pairs (A,D) and (B,E) are
C transformed to generalized Schur form, i.e. orthogonal
C matrices P, Q, U and V are computed such that P' * A * Q
C and U' * B * V are in upper quasi-triangular form and
C P' * D * Q and U' * E * V are in upper triangular form;
C (b) if REDUCE = 'R', then the matrices C and F are transformed
C to give P' * C * V and P' * F * V respectively;
C (c) if REDUCE = 'R', then the transformed system
C
C P' * A * Q * R1 - L1 * U' * B * V = scale * P' * C * V
C P' * D * Q * R1 - L1 * U' * E * V = scale * P' * F * V
C
C is solved to give R1 and L1; otherwise, equation (1) is
C solved to give R and L directly. The Dif estimator
C is also computed if JOBD <> 'N'.
C (d) if REDUCE = 'R', then the solution is transformed back
C to give R = Q * R1 * V' and L = P * L1 * U'.
C
C By using Kronecker products, equation (1) can also be written as
C the system of linear equations Z * x = scale*y (see [1]), where
C
C | I*A I*D |
C Z = | |.
C |-B'*I -E'*I |
C
C -1
C If JOBD <> 'N', then a lower bound on ||Z ||, in either the one-
C norm or Frobenius norm, is computed, which in most cases is
C a reliable estimate of the true value. Notice that since Z is a
C matrix of order 2 * M * N, the exact value of Dif (i.e., in the
C Frobenius norm case, the smallest singular value of Z) may be very
C expensive to compute.
C
C The case TRANS = 'N', and REDUCE = 'A' or 'B', is similar, but
C only one of the matrix pairs should be reduced and the
C calculations simplify.
C
C For the case TRANS = 'T', and REDUCE = 'R' or 'N', the algorithm
C is similar, but the steps (b), (c), and (d) are as follows:
C
C (b) if REDUCE = 'R', then the matrices C and F are transformed
C to give Q' * C * V and P' * F * U respectively;
C (c) if REDUCE = 'R', then the transformed system
C
C Q' * A' * P * R1 + Q' * D' * P * L1 = scale * Q' * C * V
C R1 * V' * B' * U + L1 * V' * E' * U = -scale * P' * F * U
C
C is solved to give R1 and L1; otherwise, equation (2) is
C solved to give R and L directly.
C (d) if REDUCE = 'R', then the solution is transformed back
C to give R = P * R1 * V' and L = P * L1 * V'.
C
C REFERENCES
C
C [1] Kagstrom, B. and Westin, L.
C Generalized Schur Methods with Condition Estimators for
C Solving the Generalized Sylvester Equation.
C IEEE Trans. Auto. Contr., 34, pp. 745-751, 1989.
C [2] Kagstrom, B. and Westin, L.
C GSYLV - Fortran Routines for the Generalized Schur Method with
C Dif Estimators for Solving the Generalized Sylvester
C Equation.
C Report UMINF-132.86, Institute of Information Processing,
C Univ. of Umea, Sweden, July 1987.
C [3] Golub, G.H., Nash, S. and Van Loan, C.F.
C A Hessenberg-Schur Method for the Problem AX + XB = C.
C IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C [4] Kagstrom, B. and Van Dooren, P.
C Additive Decomposition of a Transfer Function with respect to
C a Specified Region.
C In: "Signal Processing, Scattering and Operator Theory, and
C Numerical Methods" (Eds. M.A. Kaashoek et al.).
C Proceedings of MTNS-89, Vol. 3, pp. 469-477, Birkhauser Boston
C Inc., 1990.
C [5] Kagstrom, B. and Van Dooren, P.
C A Generalized State-space Approach for the Additive
C Decomposition of a Transfer Matrix.
C Report UMINF-91.12, Institute of Information Processing, Univ.
C of Umea, Sweden, April 1991.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable. A reliable estimate for the
C condition number of Z in the Frobenius norm, is (see [1])
C
C K(Z) = SQRT( ||A||**2 + ||B||**2 + ||C||**2 + ||D||**2 )/DIF.
C
C If mu is an upper bound on the relative error of the elements of
C the matrices A, B, C, D, E and F, then the relative error in the
C actual solution is approximately mu * K(Z).
C
C The relative error in the computed solution (due to rounding
C errors) is approximately EPS * K(Z), where EPS is the machine
C precision (see LAPACK Library routine DLAMCH).
C
C FURTHER COMMENTS
C
C For applications of the generalized Sylvester equation in control
C theory, see [4] and [5].
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C Supersedes Release 2.0 routine SB04CD by Bo Kagstrom and Lars
C Westin.
C
C REVISIONS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, May 1999, Dec. 1999,
C May 2009.
C
C KEYWORDS
C
C Generalized eigenvalue problem, orthogonal transformation, real
C Schur form, Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER JOBD, REDUCE, TRANS
INTEGER INFO, LDA, LDB, LDC, LDD, LDE, LDF, LDP, LDQ,
$ LDU, LDV, LDWORK, M, N
DOUBLE PRECISION DIF, SCALE
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), E(LDE,*), F(LDF,*), P(LDP,*),
$ Q(LDQ,*), U(LDU,*), V(LDV,*)
C .. Local Scalars ..
LOGICAL ILASCL, ILBSCL, ILDSCL, ILESCL, LJOB1, LJOB2,
$ LJOBD, LJOBDF, LJOBF, LREDRA, LREDRB, LREDUA,
$ LREDUB, LREDUC, LREDUR, LTRANN, SUFWRK
INTEGER I, IERR, IJOB, MINWRK, MN, WRKOPT
DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, DNRM,
$ DNRMTO, ENRM, ENRMTO, SAFMAX, SAFMIN, SMLNUM
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEGS, DGEMM, DGEMV, DLABAD, DLACPY,
$ DLASCL, DTGSYL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, SQRT
C .. Executable Statements ..
C
INFO = 0
MN = MAX( M, N )
LREDUR = LSAME( REDUCE, 'R' )
LREDUA = LSAME( REDUCE, 'A' )
LREDUB = LSAME( REDUCE, 'B' )
LREDRA = LREDUR.OR.LREDUA
LREDRB = LREDUR.OR.LREDUB
LREDUC = LREDRA.OR.LREDUB
IF ( LREDUR ) THEN
MINWRK = MAX( 1, 7*MN )
ELSE IF ( LREDUA ) THEN
MINWRK = MAX( 1, 7*M )
ELSE IF ( LREDUB ) THEN
MINWRK = MAX( 1, 7*N )
ELSE
MINWRK = 1
END IF
LTRANN = LSAME( TRANS, 'N' )
IF ( LTRANN ) THEN
LJOB1 = LSAME( JOBD, '1' )
LJOB2 = LSAME( JOBD, '2' )
LJOBD = LSAME( JOBD, 'D' )
LJOBF = LSAME( JOBD, 'F' )
LJOBDF = LJOB1.OR.LJOB2.OR.LJOBD.OR.LJOBF
IF ( LJOBD.OR.LJOBF ) MINWRK = MAX( MINWRK, 2*M*N )
END IF
C
C Test the input scalar arguments.
C
IF( .NOT.LREDUC .AND. .NOT.LSAME( REDUCE, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.LTRANN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
INFO = -2
ELSE IF( LTRANN ) THEN
IF( .NOT.LJOBDF .AND. .NOT.LSAME( JOBD, 'N' ) )
$ INFO = -3
END IF
IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
INFO = -13
ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
INFO = -15
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -17
ELSE IF( ( .NOT.LREDRA .AND. LDP.LT.1 ) .OR.
$ ( LREDRA .AND. LDP.LT.MAX( 1, M ) ) ) THEN
INFO = -21
ELSE IF( ( .NOT.LREDRA .AND. LDQ.LT.1 ) .OR.
$ ( LREDRA .AND. LDQ.LT.MAX( 1, M ) ) ) THEN
INFO = -23
ELSE IF( ( .NOT.LREDRB .AND. LDU.LT.1 ) .OR.
$ ( LREDRB .AND. LDU.LT.MAX( 1, N ) ) ) THEN
INFO = -25
ELSE IF( ( .NOT.LREDRB .AND. LDV.LT.1 ) .OR.
$ ( LREDRB .AND. LDV.LT.MAX( 1, N ) ) ) THEN
INFO = -27
ELSE IF( LDWORK.LT.MINWRK ) THEN
INFO = -30
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB04OD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 .OR. M.EQ.0 ) THEN
SCALE = ONE
DWORK(1) = ONE
IF ( LTRANN ) THEN
IF ( LJOBDF ) DIF = ONE
END IF
RETURN
END IF
WRKOPT = 1
SUFWRK = LDWORK.GE.M*N
C
C STEP 1: Reduce (A,D) and/or (B,E) to generalized Schur form.
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
IF ( LREDUC ) THEN
C
C Get machine constants.
C
SAFMIN = DLAMCH( 'Safe minimum' )
SAFMAX = ONE / SAFMIN
CALL DLABAD( SAFMIN, SAFMAX )
SMLNUM = SQRT( SAFMIN ) / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
C
IF ( .NOT.LREDUB ) THEN
C
C Scale A if max element outside range [SMLNUM,BIGNUM].
C
ANRM = DLANGE( 'M', M, M, A, LDA, DWORK )
ILASCL = .FALSE.
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
ANRMTO = SMLNUM
ILASCL = .TRUE.
ELSE IF( ANRM.GT.BIGNUM ) THEN
ANRMTO = BIGNUM
ILASCL = .TRUE.
END IF
IF( ILASCL )
$ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, M, M, A, LDA,
$ IERR )
C
C Scale D if max element outside range [SMLNUM,BIGNUM]
C
DNRM = DLANGE( 'M', M, M, D, LDD, DWORK )
ILDSCL = .FALSE.
IF( DNRM.GT.ZERO .AND. DNRM.LT.SMLNUM ) THEN
DNRMTO = SMLNUM
ILDSCL = .TRUE.
ELSE IF( DNRM.GT.BIGNUM ) THEN
DNRMTO = BIGNUM
ILDSCL = .TRUE.
END IF
IF( ILDSCL )
$ CALL DLASCL( 'G', 0, 0, DNRM, DNRMTO, M, M, D, LDD,
$ IERR )
C
C Reduce (A,D) to generalized Schur form.
C Workspace: need 7*M;
C prefer 5*M + M*(NB+1).
C
CALL DGEGS( 'Vectors left', 'Vectors right', M, A, LDA, D,
$ LDD, DWORK, DWORK(M+1), DWORK(2*M+1), P, LDP, Q,
$ LDQ, DWORK(3*M+1), LDWORK-3*M, INFO )
C
C Undo scaling
C
IF( ILASCL )
$ CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, M, M, A, LDA,
$ IERR )
C
IF( ILDSCL )
$ CALL DLASCL( 'U', 0, 0, DNRMTO, DNRM, M, M, D, LDD,
$ IERR )
C
IF ( INFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(3*M+1) ) + 3*M )
END IF
IF ( .NOT.LREDUA ) THEN
C
C Scale B if max element outside range [SMLNUM,BIGNUM]
C
BNRM = DLANGE( 'M', N, N, B, LDB, DWORK )
ILBSCL = .FALSE.
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
BNRMTO = SMLNUM
ILBSCL = .TRUE.
ELSE IF( BNRM.GT.BIGNUM ) THEN
BNRMTO = BIGNUM
ILBSCL = .TRUE.
END IF
IF( ILBSCL )
$ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB,
$ IERR )
C
C Scale E if max element outside range [SMLNUM,BIGNUM]
C
ENRM = DLANGE( 'M', N, N, E, LDE, DWORK )
ILESCL = .FALSE.
IF( ENRM.GT.ZERO .AND. ENRM.LT.SMLNUM ) THEN
ENRMTO = SMLNUM
ILESCL = .TRUE.
ELSE IF( ENRM.GT.BIGNUM ) THEN
ENRMTO = BIGNUM
ILESCL = .TRUE.
END IF
IF( ILESCL )
$ CALL DLASCL( 'G', 0, 0, ENRM, ENRMTO, N, N, E, LDE,
$ IERR )
C
C Reduce (B,E) to generalized Schur form.
C Workspace: need 7*N;
C prefer 5*N + N*(NB+1).
C
CALL DGEGS( 'Vectors left', 'Vectors right', N, B, LDB, E,
$ LDE, DWORK, DWORK(N+1), DWORK(2*N+1), U, LDU, V,
$ LDV, DWORK(3*N+1), LDWORK-3*N, INFO )
C
C Undo scaling
C
IF( ILBSCL )
$ CALL DLASCL( 'H', 0, 0, BNRMTO, BNRM, N, N, B, LDB,
$ IERR )
C
IF( ILESCL )
$ CALL DLASCL( 'U', 0, 0, ENRMTO, ENRM, N, N, E, LDE,
$ IERR )
C
IF ( INFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(3*N+1) ) + 3*N )
END IF
END IF
C
IF (.NOT.LREDUR ) THEN
C
C Set INFO = 2 if A and/or B are/is not in quasi-triangular form.
C
IF (.NOT.LREDUA ) THEN
I = 1
C
20 CONTINUE
IF ( I.LE.M-2 ) THEN
IF ( A(I+1,I).NE.ZERO ) THEN
IF ( A(I+2,I+1).NE.ZERO ) THEN
INFO = 2
RETURN
ELSE
I = I + 1
END IF
END IF
I = I + 1
GO TO 20
END IF
END IF
C
IF (.NOT.LREDUB ) THEN
I = 1
C
40 CONTINUE
IF ( I.LE.N-2 ) THEN
IF ( B(I+1,I).NE.ZERO ) THEN
IF ( B(I+2,I+1).NE.ZERO ) THEN
INFO = 2
RETURN
ELSE
I = I + 1
END IF
END IF
I = I + 1
GO TO 40
END IF
END IF
END IF
C
C STEP 2: Modify right hand sides (C,F).
C
IF ( LREDUC ) THEN
WRKOPT = MAX( WRKOPT, M*N )
IF ( SUFWRK ) THEN
C
C Enough workspace for a BLAS 3 calculation.
C
IF ( LTRANN ) THEN
C
C Equation (1).
C
IF ( .NOT.LREDUB ) THEN
CALL DGEMM( 'Transpose', 'No transpose', M, N, M, ONE,
$ P, LDP, C, LDC, ZERO, DWORK, M )
ELSE
CALL DLACPY( 'Full', M, N, C, LDC, DWORK, M )
END IF
IF ( .NOT.LREDUA ) THEN
CALL DGEMM( 'No transpose', 'No transpose', M, N, N,
$ ONE, DWORK, M, V, LDV, ZERO, C, LDC )
ELSE
CALL DLACPY( 'Full', M, N, DWORK, M, C, LDC )
END IF
IF ( .NOT.LREDUB ) THEN
CALL DGEMM( 'Transpose', 'No transpose', M, N, M, ONE,
$ P, LDP, F, LDF, ZERO, DWORK, M )
ELSE
CALL DLACPY( 'Full', M, N, F, LDF, DWORK, M )
END IF
IF ( .NOT.LREDUA ) THEN
CALL DGEMM( 'No transpose', 'No transpose', M, N, N,
$ ONE, DWORK, M, V, LDV, ZERO, F, LDF )
ELSE
CALL DLACPY( 'Full', M, N, DWORK, M, F, LDF )
END IF
ELSE
C
C Equation (2).
C
IF ( .NOT.LREDUB ) THEN
CALL DGEMM( 'Transpose', 'No transpose', M, N, M, ONE,
$ Q, LDQ, C, LDC, ZERO, DWORK, M )
ELSE
CALL DLACPY( 'Full', M, N, C, LDC, DWORK, M )
END IF
IF ( .NOT.LREDUA ) THEN
CALL DGEMM( 'No transpose', 'No transpose', M, N, N,
$ ONE, DWORK, M, V, LDV, ZERO, C, LDC )
ELSE
CALL DLACPY( 'Full', M, N, DWORK, M, C, LDC )
END IF
IF ( .NOT.LREDUB ) THEN
CALL DGEMM( 'Transpose', 'No transpose', M, N, M, ONE,
$ P, LDP, F, LDF, ZERO, DWORK, M )
ELSE
CALL DLACPY( 'Full', M, N, F, LDF, DWORK, M )
END IF
IF ( .NOT.LREDUA ) THEN
CALL DGEMM( 'No transpose', 'No transpose', M, N, N,
$ ONE, DWORK, M, U, LDU, ZERO, F, LDF )
ELSE
CALL DLACPY( 'Full', M, N, DWORK, M, F, LDF )
END IF
END IF
ELSE
C
C Use a BLAS 2 calculation.
C
IF ( LTRANN ) THEN
C
C Equation (1).
C
IF ( .NOT.LREDUB ) THEN
C
DO 60 I = 1, N
CALL DGEMV( 'Transpose', M, M, ONE, P, LDP, C(1,I),
$ 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, C(1,I), 1 )
60 CONTINUE
C
END IF
IF ( .NOT.LREDUA ) THEN
C
DO 80 I = 1, M
CALL DGEMV( 'Transpose', N, N, ONE, V, LDV, C(I,1),
$ LDC, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, C(I,1), LDC )
80 CONTINUE
C
END IF
IF ( .NOT.LREDUB ) THEN
C
DO 100 I = 1, N
CALL DGEMV( 'Transpose', M, M, ONE, P, LDP, F(1,I),
$ 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, F(1,I), 1 )
100 CONTINUE
C
END IF
IF ( .NOT.LREDUA ) THEN
C
DO 120 I = 1, M
CALL DGEMV( 'Transpose', N, N, ONE, V, LDV, F(I,1),
$ LDF, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, F(I,1), LDF )
120 CONTINUE
C
END IF
ELSE
C
C Equation (2).
C
IF ( .NOT.LREDUB ) THEN
C
DO 140 I = 1, N
CALL DGEMV( 'Transpose', M, M, ONE, Q, LDQ, C(1,I),
$ 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, C(1,I), 1 )
140 CONTINUE
C
END IF
IF ( .NOT.LREDUA ) THEN
C
DO 160 I = 1, M
CALL DGEMV( 'Transpose', N, N, ONE, V, LDV, C(I,1),
$ LDC, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, C(I,1), LDC )
160 CONTINUE
C
END IF
IF ( .NOT.LREDUB ) THEN
C
DO 180 I = 1, N
CALL DGEMV( 'Transpose', M, M, ONE, P, LDP, F(1,I),
$ 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, F(1,I), 1 )
180 CONTINUE
C
END IF
IF ( .NOT.LREDUA ) THEN
C
DO 200 I = 1, M
CALL DGEMV( 'Transpose', N, N, ONE, U, LDU, F(I,1),
$ LDF, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, F(I,1), LDF )
200 CONTINUE
C
END IF
END IF
END IF
END IF
C
C STEP 3: Solve the transformed system and compute the Dif
C estimator.
C
IF ( LTRANN ) THEN
IF ( LJOBD ) THEN
IJOB = 1
ELSE IF ( LJOBF ) THEN
IJOB = 2
ELSE IF ( LJOB1 ) THEN
IJOB = 3
ELSE IF ( LJOB2 ) THEN
IJOB = 4
ELSE
IJOB = 0
END IF
ELSE
IJOB = 0
END IF
C
C Workspace: need 2*M*N if TRANS = 'N' and JOBD = 'D' or 'F';
C 1, otherwise.
C
CALL DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
$ E, LDE, F, LDF, SCALE, DIF, DWORK, LDWORK, IWORK,
$ INFO )
IF ( INFO.NE.0 ) THEN
INFO = 3
RETURN
END IF
IF ( LTRANN ) THEN
IF ( LJOBD.OR.LJOBF )
$ WRKOPT = MAX( WRKOPT, 2*M*N )
END IF
C
C STEP 4: Back transformation of the solution.
C
IF ( LREDUC ) THEN
IF (SUFWRK ) THEN
C
C Enough workspace for a BLAS 3 calculation.
C
IF ( LTRANN ) THEN
C
C Equation (1).
C
IF ( .NOT.LREDUB ) THEN
CALL DGEMM( 'No transpose', 'No transpose', M, N, M,
$ ONE, Q, LDQ, C, LDC, ZERO, DWORK, M )
ELSE
CALL DLACPY( 'Full', M, N, C, LDC, DWORK, M )
END IF
IF ( .NOT.LREDUA ) THEN
CALL DGEMM( 'No transpose', 'Transpose', M, N, N, ONE,
$ DWORK, M, V, LDV, ZERO, C, LDC )
ELSE
CALL DLACPY( 'Full', M, N, DWORK, M, C, LDC )
END IF
IF ( .NOT.LREDUB ) THEN
CALL DGEMM( 'No transpose', 'No transpose', M, N, M,
$ ONE, P, LDP, F, LDF, ZERO, DWORK, M )
ELSE
CALL DLACPY( 'Full', M, N, F, LDF, DWORK, M )
END IF
IF ( .NOT.LREDUA ) THEN
CALL DGEMM( 'No transpose', 'Transpose', M, N, N, ONE,
$ DWORK, M, U, LDU, ZERO, F, LDF )
ELSE
CALL DLACPY( 'Full', M, N, DWORK, M, F, LDF )
END IF
ELSE
C
C Equation (2).
C
IF ( .NOT.LREDUB ) THEN
CALL DGEMM( 'No transpose', 'No transpose', M, N, M,
$ ONE, P, LDP, C, LDC, ZERO, DWORK, M )
ELSE
CALL DLACPY( 'Full', M, N, C, LDC, DWORK, M )
END IF
IF ( .NOT.LREDUA ) THEN
CALL DGEMM( 'No transpose', 'Transpose', M, N, N,
$ ONE, DWORK, M, V, LDV, ZERO, C, LDC )
ELSE
CALL DLACPY( 'Full', M, N, DWORK, M, C, LDC )
END IF
IF ( .NOT.LREDUB ) THEN
CALL DGEMM( 'No transpose', 'No transpose', M, N, M,
$ ONE, P, LDP, F, LDF, ZERO, DWORK, M )
ELSE
CALL DLACPY( 'Full', M, N, F, LDF, DWORK, M )
END IF
IF ( .NOT.LREDUA ) THEN
CALL DGEMM( 'No transpose', 'Transpose', M, N, N,
$ ONE, DWORK, M, V, LDV, ZERO, F, LDF )
ELSE
CALL DLACPY( 'Full', M, N, DWORK, M, F, LDF )
END IF
END IF
ELSE
C
C Use a BLAS 2 calculation.
C
IF ( LTRANN ) THEN
C
C Equation (1).
C
IF ( .NOT.LREDUB ) THEN
C
DO 220 I = 1, N
CALL DGEMV( 'No transpose', M, M, ONE, Q, LDQ,
$ C(1,I), 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, C(1,I), 1 )
220 CONTINUE
C
END IF
IF ( .NOT.LREDUA ) THEN
C
DO 240 I = 1, M
CALL DGEMV( 'No transpose', N, N, ONE, V, LDV,
$ C(I,1), LDC, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, C(I,1), LDC )
240 CONTINUE
C
END IF
IF ( .NOT.LREDUB ) THEN
C
DO 260 I = 1, N
CALL DGEMV( 'No transpose', M, M, ONE, P, LDP,
$ F(1,I), 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, F(1,I), 1 )
260 CONTINUE
C
END IF
IF ( .NOT.LREDUA ) THEN
C
DO 280 I = 1, M
CALL DGEMV( 'No transpose', N, N, ONE, U, LDU,
$ F(I,1), LDF, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, F(I,1), LDF )
280 CONTINUE
C
END IF
ELSE
C
C Equation (2).
C
IF ( .NOT.LREDUB ) THEN
C
DO 300 I = 1, N
CALL DGEMV( 'No transpose', M, M, ONE, P, LDP,
$ C(1,I), 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, C(1,I), 1 )
300 CONTINUE
C
END IF
IF ( .NOT.LREDUA ) THEN
C
DO 320 I = 1, M
CALL DGEMV( 'No transpose', N, N, ONE, V, LDV,
$ C(I,1), LDC, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, C(I,1), LDC )
320 CONTINUE
C
END IF
IF ( .NOT.LREDUB ) THEN
C
DO 340 I = 1, N
CALL DGEMV( 'No transpose', M, M, ONE, P, LDP,
$ F(1,I), 1, ZERO, DWORK, 1 )
CALL DCOPY( M, DWORK, 1, F(1,I), 1 )
340 CONTINUE
C
END IF
IF ( .NOT.LREDUA ) THEN
C
DO 360 I = 1, M
CALL DGEMV( 'No transpose', N, N, ONE, V, LDV,
$ F(I,1), LDF, ZERO, DWORK, 1 )
CALL DCOPY( N, DWORK, 1, F(I,1), LDF )
360 CONTINUE
C
END IF
END IF
END IF
END IF
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of SB04OD ***
END
|