File: SB04OW.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (568 lines) | stat: -rw-r--r-- 18,496 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
      SUBROUTINE SB04OW( M, N, A, LDA, B, LDB, C, LDC, D, LDD, E, LDE,
     $                   F, LDF, SCALE, IWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To solve a periodic Sylvester equation
C
C              A * R - L * B = scale * C                           (1)
C              D * L - R * E = scale * F,
C
C     using Level 1 and 2 BLAS, where R and L are unknown M-by-N
C     matrices, (A, D), (B, E) and (C, F) are given matrix pairs of
C     size M-by-M, N-by-N and M-by-N, respectively, with real entries.
C     (A, D) and (B, E) must be in periodic Schur form, i.e. A, B are
C     upper quasi triangular and D, E are upper triangular. The solution
C     (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output scaling
C     factor chosen to avoid overflow.
C
C     This routine is largely based on the LAPACK routine DTGSY2
C     developed by Bo Kagstrom and Peter Poromaa.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The order of A and D, and the row dimension of C, F, R
C             and L.  M >= 0.
C
C     N       (input) INTEGER
C             The order of B and E, and the column dimension of C, F, R
C             and L.  N >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,M)
C             On entry, the leading M-by-M part of this array must
C             contain the upper quasi triangular matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,M).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper quasi triangular matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading M-by-N part of this array must
C             contain the right-hand-side of the first matrix equation
C             in (1).
C             On exit, the leading M-by-N part of this array contains
C             the solution R.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,M).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading M-by-M part of this array must
C             contain the upper triangular matrix D.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= MAX(1,M).
C
C     E       (input) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper triangular matrix E.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     F       (input/output) DOUBLE PRECISION array, dimension (LDF,N)
C             On entry, the leading M-by-N part of this array must
C             contain the right-hand-side of the second matrix equation
C             in (1).
C             On exit, the leading M-by-N part of this array contains
C             the solution L.
C
C     LDF     INTEGER
C             The leading dimension of the array F.  LDF >= MAX(1,M).
C
C     SCALE   (output) DOUBLE PRECISION
C             On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the arrays
C             C and F will hold the solutions R and L, respectively, to
C             a slightly perturbed system but the input matrices A, B, D
C             and E have not been changed. If SCALE = 0, C and F will
C             hold solutions to the homogeneous system with C = F = 0.
C             Normally, SCALE = 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M+N+2)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  the matrix products A*D and B*E have common or very
C                   close eigenvalues.
C
C     METHOD
C
C     In matrix notation solving equation (1) corresponds to solving
C     Z*x = scale*b, where Z is defined as
C
C         Z = [  kron(In, A)  -kron(B', Im) ]            (2)
C             [ -kron(E', Im)  kron(In, D)  ],
C
C     Ik is the identity matrix of size k and X' is the transpose of X.
C     kron(X, Y) is the Kronecker product between the matrices X and Y.
C     In the process of solving (1), we solve a number of such systems
C     where Dim(Im), Dim(In) = 1 or 2.
C
C     REFERENCES
C
C     [1] Kagstrom, B.
C         A Direct Method for Reordering Eigenvalues in the Generalized
C         Real Schur Form of a Regular Matrix Pair (A,B). M.S. Moonen
C         et al (eds.), Linear Algebra for Large Scale and Real-Time
C         Applications, Kluwer Academic Publ., pp. 195-218, 1993.
C
C     [2] Sreedhar, J. and Van Dooren, P.
C         A Schur approach for solving some periodic matrix equations.
C         U. Helmke et al (eds.), Systems and Networks: Mathematical
C         Theory and Applications, Akademie Verlag, Berlin, vol. 77,
C         pp. 339-362, 1994.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, June 2008 (SLICOT version of the HAPACK routine DTGPY2).
C
C     KEYWORDS
C
C     Matrix equation, periodic Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER           LDZ
      PARAMETER         ( LDZ = 8 )
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
      DOUBLE PRECISION  SCALE
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  E(LDE,*), F(LDF,*)
C     .. Local Scalars ..
      INTEGER           I, IE, IERR, II, IS, ISP1, J, JE, JJ, JS, JSP1,
     $                  K, MB, NB, P, Q, ZDIM
      DOUBLE PRECISION  SCALOC
C     .. Local Arrays ..
      INTEGER           IPIV(LDZ), JPIV(LDZ)
      DOUBLE PRECISION  RHS(LDZ), Z(LDZ,LDZ)
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMM, DGEMV, DGER, DGESC2,
     $                  DGETC2, DLASET, DSCAL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      INFO = 0
      IERR = 0
      IF ( M.LE.0 ) THEN
         INFO = -1
      ELSE IF ( N.LE.0 ) THEN
         INFO = -2
      ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      ELSE IF ( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF ( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF ( LDD.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF ( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF ( LDF.LT.MAX( 1, M ) ) THEN
         INFO = -14
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB04OW', -INFO )
         RETURN
      END IF
C
C     Determine block structure of A.
C
      P = 0
      I = 1
   10 CONTINUE
      IF ( I.GT.M )
     $   GO TO 20
      P = P + 1
      IWORK(P) = I
      IF( I.EQ.M )
     $   GO TO 20
      IF ( A(I+1,I).NE.ZERO ) THEN
         I = I + 2
      ELSE
         I = I + 1
      END IF
      GO TO 10
   20 CONTINUE
      IWORK(P+1) = M + 1
C
C     Determine block structure of B.
C
      Q = P + 1
      J = 1
   30 CONTINUE
      IF ( J.GT.N )
     $   GO TO 40
      Q = Q + 1
      IWORK(Q) = J
      IF( J.EQ.N )
     $   GO TO 40
      IF ( B(J+1,J).NE.ZERO ) THEN
         J = J + 2
      ELSE
         J = J + 1
      END IF
      GO TO 30
   40 CONTINUE
      IWORK(Q+1) = N + 1
C
C     Solve (I, J) - subsystem
C       A(I,I) * R(I,J) - L(I,J) * B(J,J) = C(I,J)
C       D(I,I) * L(I,J) - R(I,J) * E(J,J) = F(I,J)
C     for I = P, P - 1, ..., 1; J = 1, 2, ..., Q.
C
      SCALE  = ONE
      SCALOC = ONE
      DO 120 J = P + 2, Q
         JS = IWORK(J)
         JSP1 = JS + 1
         JE = IWORK(J+1) - 1
         NB = JE - JS + 1
         DO 110 I = P, 1, -1
C
            IS = IWORK(I)
            ISP1 = IS + 1
            IE = IWORK(I+1) - 1
            MB = IE - IS + 1
            ZDIM = MB*NB*2
C
            IF ( ( MB.EQ.1 ).AND.( NB.EQ.1 ) ) THEN
C
C              Build a 2-by-2 system Z * x = RHS.
C
               Z(1,1) =  A(IS,IS)
               Z(2,1) = -E(JS,JS)
               Z(1,2) = -B(JS,JS)
               Z(2,2) =  D(IS,IS)
C
C              Set up right hand side(s).
C
               RHS(1) = C(IS,JS)
               RHS(2) = F(IS,JS)
C
C              Solve Z * x = RHS.
C
               CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
               IF ( IERR.GT.0 )
     $            INFO = IERR
C
               CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
               IF ( SCALOC.NE.ONE ) THEN
                  DO 50 K = 1, N
                     CALL DSCAL( M, SCALOC, C(1,K), 1 )
                     CALL DSCAL( M, SCALOC, F(1,K), 1 )
   50             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
C
C              Unpack solution vector(s).
C
               C(IS,JS) = RHS(1)
               F(IS,JS) = RHS(2)
C
C              Substitute R(I,J) and L(I,J) into remaining equation.
C
               IF ( I.GT.1 ) THEN
                  CALL DAXPY( IS-1, -RHS(1), A(1,IS), 1, C(1,JS), 1 )
                  CALL DAXPY( IS-1, -RHS(2), D(1,IS), 1, F(1,JS), 1 )
               END IF
               IF ( J.LT.Q ) THEN
                  CALL DAXPY( N-JE, RHS(2), B(JS,JE+1), LDB, C(IS,JE+1),
     $                        LDC )
                  CALL DAXPY( N-JE, RHS(1), E(JS,JE+1), LDE, F(IS,JE+1),
     $                        LDF )
               END IF
C
            ELSE IF ( ( MB.EQ.1 ).AND.( NB.EQ.2 ) ) THEN
C
C              Build a 4-by-4 system Z * x = RHS.
C
               Z(1,1) =  A(IS,IS)
               Z(2,1) =  ZERO
               Z(3,1) = -E(JS,JS)
               Z(4,1) = -E(JS,JSP1)
C
               Z(1,2) =  ZERO
               Z(2,2) =  A(IS,IS)
               Z(3,2) =  ZERO
               Z(4,2) = -E(JSP1,JSP1)
C
               Z(1,3) = -B(JS,JS)
               Z(2,3) = -B(JS,JSP1)
               Z(3,3) =  D(IS,IS)
               Z(4,3) =  ZERO
C
               Z(1,4) = -B(JSP1,JS)
               Z(2,4) = -B(JSP1,JSP1)
               Z(3,4) =  ZERO
               Z(4,4) =  D(IS,IS)
C
C              Set up right hand side(s).
C
               RHS(1) = C(IS,JS)
               RHS(2) = C(IS,JSP1)
               RHS(3) = F(IS,JS)
               RHS(4) = F(IS,JSP1)
C
C              Solve Z * x = RHS.
C
               CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
               IF ( IERR.GT.0 )
     $            INFO = IERR
C
               CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
               IF ( SCALOC.NE.ONE ) THEN
                  DO 60 K = 1, N
                     CALL DSCAL( M, SCALOC, C(1,K), 1 )
                     CALL DSCAL( M, SCALOC, F(1,K), 1 )
   60             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
C
C              Unpack solution vector(s).
C
               C(IS,JS)   = RHS(1)
               C(IS,JSP1) = RHS(2)
               F(IS,JS)   = RHS(3)
               F(IS,JSP1) = RHS(4)
C
C              Substitute R(I,J) and L(I,J) into remaining equation.
C
               IF ( I.GT.1 ) THEN
                  CALL DGER( IS-1, NB, -ONE, A(1,IS), 1, RHS(1), 1,
     $                       C(1,JS), LDC )
                  CALL DGER( IS-1, NB, -ONE, D(1,IS), 1, RHS(3), 1,
     $                       F(1,JS), LDF )
               END IF
               IF ( J.LT.Q ) THEN
                  CALL DAXPY( N-JE, RHS(3), B(JS,JE+1), LDB, C(IS,JE+1),
     $                        LDC )
                  CALL DAXPY( N-JE, RHS(1), E(JS,JE+1), LDE, F(IS,JE+1),
     $                        LDF )
                  CALL DAXPY( N-JE, RHS(4), B(JSP1,JE+1), LDB,
     $                        C(IS,JE+1), LDC )
                  CALL DAXPY( N-JE, RHS(2), E(JSP1,JE+1), LDE,
     $                        F(IS,JE+1), LDF )
               END IF
C
            ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
C
C              Build a 4-by-4 system Z * x = RHS.
C
               Z(1,1) =  A(IS,IS)
               Z(2,1) =  A(ISP1,IS)
               Z(3,1) = -E(JS,JS)
               Z(4,1) =  ZERO
C
               Z(1,2) =  A(IS,ISP1)
               Z(2,2) =  A(ISP1,ISP1)
               Z(3,2) =  ZERO
               Z(4,2) = -E(JS,JS)
C
               Z(1,3) = -B(JS,JS)
               Z(2,3) =  ZERO
               Z(3,3) =  D(IS,IS)
               Z(4,3) =  ZERO
C
               Z(1,4) =  ZERO
               Z(2,4) = -B(JS,JS)
               Z(3,4) =  D(IS,ISP1)
               Z(4,4) =  D(ISP1,ISP1)
C
C              Set up right hand side(s).
C
               RHS(1) = C(IS,JS)
               RHS(2) = C(ISP1,JS)
               RHS(3) = F(IS,JS)
               RHS(4) = F(ISP1,JS)
C
C              Solve Z * x = RHS.
C
               CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
               IF ( IERR.GT.0 )
     $            INFO = IERR
C
               CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
               IF ( SCALOC.NE.ONE ) THEN
                  DO 70 K = 1, N
                     CALL DSCAL( M, SCALOC, C(1,K), 1 )
                     CALL DSCAL( M, SCALOC, F(1,K), 1 )
   70             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
C
C              Unpack solution vector(s).
C
               C(IS,JS)   = RHS(1)
               C(ISP1,JS) = RHS(2)
               F(IS,JS)   = RHS(3)
               F(ISP1,JS) = RHS(4)
C
C              Substitute R(I,J) and L(I,J) into remaining equation.
C
               IF ( I.GT.1 ) THEN
                  CALL DGEMV( 'N', IS-1, MB, -ONE, A(1,IS), LDA, RHS(1),
     $                        1, ONE, C(1,JS), 1 )
                  CALL DGEMV( 'N', IS-1, MB, -ONE, D(1,IS), LDD, RHS(3),
     $                        1, ONE, F(1,JS), 1 )
               END IF
               IF ( J.LT.Q ) THEN
                  CALL DGER( MB, N-JE, ONE, RHS(3), 1, B(JS,JE+1), LDB,
     $                       C(IS,JE+1), LDC )
                  CALL DGER( MB, N-JE, ONE, RHS(1), 1, E(JS,JE+1), LDE,
     $                       F(IS,JE+1), LDF )
               END IF
C
            ELSE IF ( ( MB.EQ.2 ).AND.( NB.EQ.2 ) ) THEN
C
C              Build an 8-by-8 system Z * x = RHS.
C
               CALL DLASET( 'All', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
C
               Z(1,1) =  A(IS,IS)
               Z(2,1) =  A(ISP1,IS)
               Z(5,1) = -E(JS,JS)
               Z(7,1) = -E(JS,JSP1)
C
               Z(1,2) =  A(IS,ISP1)
               Z(2,2) =  A(ISP1,ISP1)
               Z(6,2) = -E(JS,JS)
               Z(8,2) = -E(JS,JSP1)
C
               Z(3,3) =  A(IS,IS)
               Z(4,3) =  A(ISP1,IS)
               Z(7,3) = -E(JSP1,JSP1)
C
               Z(3,4) =  A(IS,ISP1)
               Z(4,4) =  A(ISP1,ISP1)
               Z(8,4) = -E(JSP1,JSP1)
C
               Z(1,5) = -B(JS,JS)
               Z(3,5) = -B(JS,JSP1)
               Z(5,5) =  D(IS,IS)
C
               Z(2,6) = -B(JS,JS)
               Z(4,6) = -B(JS,JSP1)
               Z(5,6) =  D(IS,ISP1)
               Z(6,6) =  D(ISP1,ISP1)
C
               Z(1,7) = -B(JSP1,JS)
               Z(3,7) = -B(JSP1,JSP1)
               Z(7,7) =  D(IS,IS)
C
               Z(2,8) = -B(JSP1,JS)
               Z(4,8) = -B(JSP1,JSP1)
C
               Z(7,8) = D(IS,ISP1)
               Z(8,8) = D(ISP1,ISP1)
C
C              Set up right hand side(s).
C
               K  = 1
               II = MB*NB + 1
               DO 80 JJ = 0, NB - 1
                  CALL DCOPY( MB, C(IS,JS+JJ), 1, RHS(K),  1 )
                  CALL DCOPY( MB, F(IS,JS+JJ), 1, RHS(II), 1 )
                  K  = K  + MB
                  II = II + MB
   80          CONTINUE
C
C              Solve Z * x = RHS.
C
               CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
               IF ( IERR.GT.0 )
     $            INFO = IERR
C
               CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
               IF ( SCALOC.NE.ONE ) THEN
                  DO 90 K = 1, N
                     CALL DSCAL( M, SCALOC, C(1,K), 1 )
                     CALL DSCAL( M, SCALOC, F(1,K), 1 )
   90             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
C
C              Unpack solution vector(s).
C
               K  = 1
               II = MB*NB + 1
               DO 100 JJ = 0, NB - 1
                  CALL DCOPY( MB, RHS(K),  1, C(IS,JS+JJ), 1 )
                  CALL DCOPY( MB, RHS(II), 1, F(IS,JS+JJ), 1 )
                  K  = K  + MB
                  II = II + MB
  100          CONTINUE
C
C              Substitute R(I,J) and L(I,J) into remaining equation.
C
               K = MB*NB + 1
               IF ( I.GT.1 ) THEN
                  CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE, A(1,IS),
     $                        LDA, RHS(1), MB, ONE, C(1,JS), LDC )
                  CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE, D(1,IS),
     $                        LDD, RHS(K), MB, ONE, F(1,JS), LDF )
               END IF
               IF ( J.LT.Q ) THEN
                  CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS(K), MB,
     $                        B(JS,JE+1), LDB, ONE, C(IS,JE+1), LDC )
                  CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS(1), MB,
     $                        E(JS,JE+1), LDE, ONE, F(IS,JE+1), LDF )
               END IF
C
            END IF
C
  110    CONTINUE
  120 CONTINUE
      RETURN
C *** Last line of SB04OW ***
      END