1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
SUBROUTINE SB04QD( N, M, A, LDA, B, LDB, C, LDC, Z, LDZ, IWORK,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X the discrete-time Sylvester equation
C
C X + AXB = C,
C
C where A, B, C and X are general N-by-N, M-by-M, N-by-M and
C N-by-M matrices respectively. A Hessenberg-Schur method, which
C reduces A to upper Hessenberg form, H = U'AU, and B' to real
C Schur form, S = Z'B'Z (with U, Z orthogonal matrices), is used.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The order of the matrix B. M >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the coefficient matrix A of the equation.
C On exit, the leading N-by-N upper Hessenberg part of this
C array contains the matrix H, and the remainder of the
C leading N-by-N part, together with the elements 2,3,...,N
C of array DWORK, contain the orthogonal transformation
C matrix U (stored in factored form).
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading M-by-M part of this array must
C contain the coefficient matrix B of the equation.
C On exit, the leading M-by-M part of this array contains
C the quasi-triangular Schur factor S of the matrix B'.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,M).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,M)
C On entry, the leading N-by-M part of this array must
C contain the coefficient matrix C of the equation.
C On exit, the leading N-by-M part of this array contains
C the solution matrix X of the problem.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,N).
C
C Z (output) DOUBLE PRECISION array, dimension (LDZ,M)
C The leading M-by-M part of this array contains the
C orthogonal matrix Z used to transform B' to real upper
C Schur form.
C
C LDZ INTEGER
C The leading dimension of array Z. LDZ >= MAX(1,M).
C
C Workspace
C
C IWORK INTEGER array, dimension (4*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, and DWORK(2), DWORK(3),..., DWORK(N) contain
C the scalar factors of the elementary reflectors used to
C reduce A to upper Hessenberg form, as returned by LAPACK
C Library routine DGEHRD.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK = MAX(1, 2*N*N + 9*N, 5*M, N + M).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, 1 <= i <= M, the QR algorithm failed to
C compute all the eigenvalues of B (see LAPACK Library
C routine DGEES);
C > M: if a singular matrix was encountered whilst solving
C for the (INFO-M)-th column of matrix X.
C
C METHOD
C
C The matrix A is transformed to upper Hessenberg form H = U'AU by
C the orthogonal transformation matrix U; matrix B' is transformed
C to real upper Schur form S = Z'B'Z using the orthogonal
C transformation matrix Z. The matrix C is also multiplied by the
C transformations, F = U'CZ, and the solution matrix Y of the
C transformed system
C
C Y + HYS' = F
C
C is computed by back substitution. Finally, the matrix Y is then
C multiplied by the orthogonal transformation matrices, X = UYZ', in
C order to obtain the solution matrix X to the original problem.
C
C REFERENCES
C
C [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C A Hessenberg-Schur method for the problem AX + XB = C.
C IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C [2] Sima, V.
C Algorithms for Linear-quadratic Optimization.
C Marcel Dekker, Inc., New York, 1996.
C
C NUMERICAL ASPECTS
C 3 3 2 2
C The algorithm requires about (5/3) N + 10 M + 5 N M + 2.5 M N
C operations and is backward stable.
C
C CONTRIBUTORS
C
C D. Sima, University of Bucharest, May 2000, Aug. 2000.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDWORK, LDZ, M, N
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), Z(LDZ,*)
C .. Local Scalars ..
INTEGER BL, CHUNK, I, IEIG, IFAIL, IHI, ILO, IND, ITAU,
$ JWORK, SDIM, WRKOPT
C .. Local Scalars ..
LOGICAL BLAS3, BLOCK
C .. Local Arrays ..
LOGICAL BWORK(1)
C .. External Functions ..
LOGICAL SELECT
C .. External Subroutines ..
EXTERNAL DCOPY, DGEES, DGEHRD, DGEMM, DGEMV, DLACPY,
$ DORMHR, DSWAP, SB04QU, SB04QY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
C
C Test the input scalar arguments.
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDZ.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LDWORK.LT.MAX( 1, 2*N*N + 9*N, 5*M, N + M ) ) THEN
INFO = -13
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB04QD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 .OR. M.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
ILO = 1
IHI = N
WRKOPT = 2*N*N + 9*N
C
C Step 1 : Reduce A to upper Hessenberg and B' to quasi-upper
C triangular. That is, H = U' * A * U (store U in factored
C form) and S = Z' * B' * Z (save Z).
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
DO 20 I = 2, M
CALL DSWAP( I-1, B(1,I), 1, B(I,1), LDB )
20 CONTINUE
C
C Workspace: need 5*M;
C prefer larger.
C
IEIG = M + 1
JWORK = IEIG + M
CALL DGEES( 'Vectors', 'Not ordered', SELECT, M, B, LDB,
$ SDIM, DWORK, DWORK(IEIG), Z, LDZ, DWORK(JWORK),
$ LDWORK-JWORK+1, BWORK, INFO )
IF ( INFO.NE.0 )
$ RETURN
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Workspace: need 2*N;
C prefer N + N*NB.
C
ITAU = 2
JWORK = ITAU + N - 1
CALL DGEHRD( N, ILO, IHI, A, LDA, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, IFAIL )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Step 2 : Form F = ( U' * C ) * Z. Use BLAS 3, if enough space.
C
C Workspace: need N + M;
C prefer N + M*NB.
C
CALL DORMHR( 'Left', 'Transpose', N, M, ILO, IHI, A, LDA,
$ DWORK(ITAU), C, LDC, DWORK(JWORK), LDWORK-JWORK+1,
$ IFAIL )
WRKOPT = MAX( WRKOPT, MAX( INT( DWORK(JWORK) ), N*M )+JWORK-1 )
C
CHUNK = ( LDWORK - JWORK + 1 ) / M
BLOCK = MIN( CHUNK, N ).GT.1
BLAS3 = CHUNK.GE.N .AND. BLOCK
C
IF ( BLAS3 ) THEN
CALL DGEMM( 'No transpose', 'No transpose', N, M, M, ONE, C,
$ LDC, Z, LDZ, ZERO, DWORK(JWORK), N )
CALL DLACPY( 'Full', N, M, DWORK(JWORK), N, C, LDC )
C
ELSE IF ( BLOCK ) THEN
C
C Use as many rows of C as possible.
C
DO 40 I = 1, N, CHUNK
BL = MIN( N-I+1, CHUNK )
CALL DGEMM( 'NoTranspose', 'NoTranspose', BL, M, M, ONE,
$ C(I,1), LDC, Z, LDZ, ZERO, DWORK(JWORK), BL )
CALL DLACPY( 'Full', BL, M, DWORK(JWORK), BL, C(I,1), LDC )
40 CONTINUE
C
ELSE
C
DO 60 I = 1, N
CALL DGEMV( 'Transpose', M, M, ONE, Z, LDZ, C(I,1), LDC,
$ ZERO, DWORK(JWORK), 1 )
CALL DCOPY( M, DWORK(JWORK), 1, C(I,1), LDC )
60 CONTINUE
C
END IF
C
C Step 3 : Solve Y + H * Y * S' = F for Y.
C
IND = M
80 CONTINUE
C
IF ( IND.GT.1 ) THEN
IF ( B(IND,IND-1).EQ.ZERO ) THEN
C
C Solve a special linear algebraic system of order N.
C Workspace: N*(N+1)/2 + 3*N.
C
CALL SB04QY( M, N, IND, A, LDA, B, LDB, C, LDC,
$ DWORK(JWORK), IWORK, INFO )
C
IF ( INFO.NE.0 ) THEN
INFO = INFO + M
RETURN
END IF
IND = IND - 1
ELSE
C
C Solve a special linear algebraic system of order 2*N.
C Workspace: 2*N*N + 9*N;
C
CALL SB04QU( M, N, IND, A, LDA, B, LDB, C, LDC,
$ DWORK(JWORK), IWORK, INFO )
C
IF ( INFO.NE.0 ) THEN
INFO = INFO + M
RETURN
END IF
IND = IND - 2
END IF
GO TO 80
ELSE IF ( IND.EQ.1 ) THEN
C
C Solve a special linear algebraic system of order N.
C Workspace: N*(N+1)/2 + 3*N;
C
CALL SB04QY( M, N, IND, A, LDA, B, LDB, C, LDC,
$ DWORK(JWORK), IWORK, INFO )
IF ( INFO.NE.0 ) THEN
INFO = INFO + M
RETURN
END IF
END IF
C
C Step 4 : Form C = ( U * Y ) * Z'. Use BLAS 3, if enough space.
C
C Workspace: need N + M;
C prefer N + M*NB.
C
CALL DORMHR( 'Left', 'No transpose', N, M, ILO, IHI, A, LDA,
$ DWORK(ITAU), C, LDC, DWORK(JWORK), LDWORK-JWORK+1,
$ IFAIL )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
IF ( BLAS3 ) THEN
CALL DGEMM( 'No transpose', 'Transpose', N, M, M, ONE, C, LDC,
$ Z, LDZ, ZERO, DWORK(JWORK), N )
CALL DLACPY( 'Full', N, M, DWORK(JWORK), N, C, LDC )
C
ELSE IF ( BLOCK ) THEN
C
C Use as many rows of C as possible.
C
DO 100 I = 1, N, CHUNK
BL = MIN( N-I+1, CHUNK )
CALL DGEMM( 'NoTranspose', 'Transpose', BL, M, M, ONE,
$ C(I,1), LDC, Z, LDZ, ZERO, DWORK(JWORK), BL )
CALL DLACPY( 'Full', BL, M, DWORK(JWORK), BL, C(I,1), LDC )
100 CONTINUE
C
ELSE
C
DO 120 I = 1, N
CALL DGEMV( 'No transpose', M, M, ONE, Z, LDZ, C(I,1), LDC,
$ ZERO, DWORK(JWORK), 1 )
CALL DCOPY( M, DWORK(JWORK), 1, C(I,1), LDC )
120 CONTINUE
END IF
C
RETURN
C *** Last line of SB04QD ***
END
|