1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
SUBROUTINE SB04QU( N, M, IND, A, LDA, B, LDB, C, LDC, D, IPR,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct and solve a linear algebraic system of order 2*M
C whose coefficient matrix has zeros below the third subdiagonal,
C and zero elements on the third subdiagonal with even column
C indices. Such systems appear when solving discrete-time Sylvester
C equations using the Hessenberg-Schur method.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix B. N >= 0.
C
C M (input) INTEGER
C The order of the matrix A. M >= 0.
C
C IND (input) INTEGER
C IND and IND - 1 specify the indices of the columns in C
C to be computed. IND > 1.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,M)
C The leading M-by-M part of this array must contain an
C upper Hessenberg matrix.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,N)
C The leading N-by-N part of this array must contain a
C matrix in real Schur form.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading M-by-N part of this array must
C contain the coefficient matrix C of the equation.
C On exit, the leading M-by-N part of this array contains
C the matrix C with columns IND-1 and IND updated.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,M).
C
C Workspace
C
C D DOUBLE PRECISION array, dimension (2*M*M+8*M)
C
C IPR INTEGER array, dimension (4*M)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C > 0: if INFO = IND, a singular matrix was encountered.
C
C METHOD
C
C A special linear algebraic system of order 2*M, whose coefficient
C matrix has zeros below the third subdiagonal and zero elements on
C the third subdiagonal with even column indices, is constructed and
C solved. The coefficient matrix is stored compactly, row-wise.
C
C REFERENCES
C
C [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C A Hessenberg-Schur method for the problem AX + XB = C.
C IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C [2] Sima, V.
C Algorithms for Linear-quadratic Optimization.
C Marcel Dekker, Inc., New York, 1996.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C D. Sima, University of Bucharest, May 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, IND, LDA, LDB, LDC, M, N
C .. Array Arguments ..
INTEGER IPR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(*)
C .. Local Scalars ..
INTEGER I, I2, IND1, J, K, K1, K2, M2
DOUBLE PRECISION TEMP
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DTRMV, SB04QR
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
IND1 = IND - 1
C
IF ( IND.LT.N ) THEN
DUM(1) = ZERO
CALL DCOPY ( M, DUM, 0, D, 1 )
DO 10 I = IND + 1, N
CALL DAXPY ( M, B(IND1,I), C(1,I), 1, D, 1 )
10 CONTINUE
C
DO 20 I = 2, M
C(I,IND1) = C(I,IND1) - A(I,I-1)*D(I-1)
20 CONTINUE
CALL DTRMV ( 'Upper', 'No Transpose', 'Non Unit', M, A, LDA,
$ D, 1 )
DO 30 I = 1, M
C(I,IND1) = C(I,IND1) - D(I)
30 CONTINUE
C
CALL DCOPY ( M, DUM, 0, D, 1 )
DO 40 I = IND + 1, N
CALL DAXPY ( M, B(IND,I), C(1,I), 1, D, 1 )
40 CONTINUE
C
DO 50 I = 2, M
C(I,IND) = C(I,IND) - A(I,I-1)*D(I-1)
50 CONTINUE
CALL DTRMV ( 'Upper', 'No Transpose', 'Non Unit', M, A, LDA,
$ D, 1 )
DO 60 I = 1, M
C(I,IND) = C(I,IND) - D(I)
60 CONTINUE
END IF
C
C Construct the linear algebraic system of order 2*M.
C
K1 = -1
M2 = 2*M
I2 = M2*(M + 3)
K = M2
C
DO 80 I = 1, M
C
DO 70 J = MAX( 1, I - 1 ), M
K1 = K1 + 2
K2 = K1 + K
TEMP = A(I,J)
D(K1) = TEMP * B(IND1,IND1)
D(K1+1) = TEMP * B(IND1,IND)
D(K2) = TEMP * B(IND,IND1)
D(K2+1) = TEMP * B(IND,IND)
IF ( I.EQ.J ) THEN
D(K1) = D(K1) + ONE
D(K2+1) = D(K2+1) + ONE
END IF
70 CONTINUE
C
K1 = K2
IF ( I.GT.1 ) K = K - 2
C
C Store the right hand side.
C
I2 = I2 + 2
D(I2) = C(I,IND)
D(I2-1) = C(I,IND1)
80 CONTINUE
C
C Solve the linear algebraic system and store the solution in C.
C
CALL SB04QR( M2, D, IPR, INFO )
C
IF ( INFO.NE.0 ) THEN
INFO = IND
ELSE
I2 = 0
C
DO 90 I = 1, M
I2 = I2 + 2
C(I,IND1) = D(IPR(I2-1))
C(I,IND) = D(IPR(I2))
90 CONTINUE
C
END IF
C
RETURN
C *** Last line of SB04QU ***
END
|