File: SB04QU.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (218 lines) | stat: -rw-r--r-- 6,467 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
      SUBROUTINE SB04QU( N, M, IND, A, LDA, B, LDB, C, LDC, D, IPR,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To construct and solve a linear algebraic system of order 2*M
C     whose coefficient matrix has zeros below the third subdiagonal,
C     and zero elements on the third subdiagonal with even column
C     indices. Such systems appear when solving discrete-time Sylvester
C     equations using the Hessenberg-Schur method.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix B.  N >= 0.
C
C     M       (input) INTEGER
C             The order of the matrix A.  M >= 0.
C
C     IND     (input) INTEGER
C             IND and IND - 1 specify the indices of the columns in C
C             to be computed.  IND > 1.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,M)
C             The leading M-by-M part of this array must contain an
C             upper Hessenberg matrix.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,M).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,N)
C             The leading N-by-N part of this array must contain a
C             matrix in real Schur form.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading M-by-N part of this array must
C             contain the coefficient matrix C of the equation.
C             On exit, the leading M-by-N part of this array contains
C             the matrix C with columns IND-1 and IND updated.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,M).
C
C     Workspace
C
C     D       DOUBLE PRECISION array, dimension (2*M*M+8*M)
C
C     IPR     INTEGER array, dimension (4*M)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             > 0:  if INFO = IND, a singular matrix was encountered.
C
C     METHOD
C
C     A special linear algebraic system of order 2*M, whose coefficient
C     matrix has zeros below the third subdiagonal and zero elements on
C     the third subdiagonal with even column indices, is constructed and
C     solved. The coefficient matrix is stored compactly, row-wise.
C
C     REFERENCES
C
C     [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C         A Hessenberg-Schur method for the problem AX + XB = C.
C         IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C     [2] Sima, V.
C         Algorithms for Linear-quadratic Optimization.
C         Marcel Dekker, Inc., New York, 1996.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTORS
C
C     D. Sima, University of Bucharest, May 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Hessenberg form, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, IND, LDA, LDB, LDC, M, N
C     .. Array Arguments ..
      INTEGER           IPR(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(*)
C     .. Local Scalars ..
      INTEGER           I, I2, IND1, J, K, K1, K2, M2
      DOUBLE PRECISION  TEMP
C     .. Local Arrays ..
      DOUBLE PRECISION  DUM(1)
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DTRMV, SB04QR
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C     .. Executable Statements ..
C
      IND1 = IND - 1
C
      IF ( IND.LT.N ) THEN
         DUM(1) = ZERO
         CALL DCOPY ( M, DUM, 0, D, 1 )
         DO 10 I = IND + 1, N
            CALL DAXPY ( M, B(IND1,I), C(1,I), 1, D, 1 )
   10    CONTINUE
C
         DO 20 I = 2, M
            C(I,IND1) = C(I,IND1) - A(I,I-1)*D(I-1)
   20    CONTINUE
         CALL DTRMV ( 'Upper', 'No Transpose', 'Non Unit', M, A, LDA,
     $                D, 1 )
         DO 30 I = 1, M
            C(I,IND1) = C(I,IND1) - D(I)
   30    CONTINUE
C
         CALL DCOPY ( M, DUM, 0, D, 1 )
         DO 40 I = IND + 1, N
            CALL DAXPY ( M, B(IND,I), C(1,I), 1, D, 1 )
   40    CONTINUE
C
         DO 50 I = 2, M
            C(I,IND) = C(I,IND) - A(I,I-1)*D(I-1)
   50    CONTINUE
         CALL DTRMV ( 'Upper', 'No Transpose', 'Non Unit', M, A, LDA,
     $                D, 1 )
         DO 60 I = 1, M
            C(I,IND) = C(I,IND) - D(I)
   60    CONTINUE
      END IF
C
C     Construct the linear algebraic system of order 2*M.
C
      K1 = -1
      M2 = 2*M
      I2 = M2*(M + 3)
      K  = M2
C
      DO 80 I = 1, M
C
         DO 70 J = MAX( 1, I - 1 ), M
            K1 = K1 + 2
            K2 = K1 + K
            TEMP = A(I,J)
            D(K1)   = TEMP * B(IND1,IND1)
            D(K1+1) = TEMP * B(IND1,IND)
            D(K2)   = TEMP * B(IND,IND1)
            D(K2+1) = TEMP * B(IND,IND)
            IF ( I.EQ.J ) THEN
               D(K1)   = D(K1) + ONE
               D(K2+1) = D(K2+1) + ONE
            END IF
   70    CONTINUE
C
         K1 = K2
         IF ( I.GT.1 ) K = K - 2
C
C        Store the right hand side.
C
         I2 = I2 + 2
         D(I2)   = C(I,IND)
         D(I2-1) = C(I,IND1)
   80 CONTINUE
C
C     Solve the linear algebraic system and store the solution in C.
C
      CALL SB04QR( M2, D, IPR, INFO )
C
      IF ( INFO.NE.0 ) THEN
         INFO = IND
      ELSE
         I2 = 0
C
         DO 90 I = 1, M
            I2 = I2 + 2
            C(I,IND1) = D(IPR(I2-1))
            C(I,IND)  = D(IPR(I2))
   90    CONTINUE
C
      END IF
C
      RETURN
C *** Last line of SB04QU ***
      END