1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
SUBROUTINE SB04RY( RC, UL, M, A, LDA, LAMBDA, D, TOL, IWORK,
$ DWORK, LDDWOR, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve a system of equations in Hessenberg form with one
C right-hand side.
C
C ARGUMENTS
C
C Mode Parameters
C
C RC CHARACTER*1
C Indicates processing by columns or rows, as follows:
C = 'R': Row transformations are applied;
C = 'C': Column transformations are applied.
C
C UL CHARACTER*1
C Indicates whether A is upper or lower Hessenberg matrix,
C as follows:
C = 'U': A is upper Hessenberg;
C = 'L': A is lower Hessenberg.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The order of the matrix A. M >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,M)
C The leading M-by-M part of this array must contain a
C matrix A in Hessenberg form.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C LAMBDA (input) DOUBLE PRECISION
C This variable must contain the value to be multiplied with
C the elements of A.
C
C D (input/output) DOUBLE PRECISION array, dimension (M)
C On entry, this array must contain the right-hand side
C vector of the Hessenberg system.
C On exit, if INFO = 0, this array contains the solution
C vector of the Hessenberg system.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used to test for near singularity of
C the triangular factor R of the Hessenberg matrix. A matrix
C whose estimated condition number is less than 1/TOL is
C considered to be nonsingular.
C
C Workspace
C
C IWORK INTEGER array, dimension (M)
C
C DWORK DOUBLE PRECISION array, dimension (LDDWOR,M+3)
C The leading M-by-M part of this array is used for
C computing the triangular factor of the QR decomposition
C of the Hessenberg matrix. The remaining 3*M elements are
C used as workspace for the computation of the reciprocal
C condition estimate.
C
C LDDWOR INTEGER
C The leading dimension of array DWORK. LDDWOR >= MAX(1,M).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if the Hessenberg matrix is (numerically) singular.
C That is, its estimated reciprocal condition number
C is less than or equal to TOL.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C D. Sima, University of Bucharest, May 2000.
C
C REVISIONS
C
C -
C
C Note that RC, UL, M, LDA, and LDDWOR must be such that the value
C of the LOGICAL variable OK in the following statement is true.
C
C OK = ( ( UL.EQ.'U' ) .OR. ( UL.EQ.'u' ) .OR.
C ( UL.EQ.'L' ) .OR. ( UL.EQ.'l' ) )
C .AND.
C ( ( RC.EQ.'R' ) .OR. ( RC.EQ.'r' ) .OR.
C ( RC.EQ.'C' ) .OR. ( RC.EQ.'c' ) )
C .AND.
C ( M.GE.0 )
C .AND.
C ( LDA.GE.MAX( 1, M ) )
C .AND.
C ( LDDWOR.GE.MAX( 1, M ) )
C
C These conditions are not checked by the routine.
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER RC, UL
INTEGER INFO, LDA, LDDWOR, M
DOUBLE PRECISION LAMBDA, TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), D(*), DWORK(LDDWOR,*)
C .. Local Scalars ..
CHARACTER TRANS
INTEGER J, J1, MJ
DOUBLE PRECISION C, R, RCOND, S
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DLARTG, DROT, DSCAL, DTRCON, DTRSV
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C .. Executable Statements ..
C
INFO = 0
C
C For speed, no tests on the input scalar arguments are made.
C Quick return if possible.
C
IF ( M.EQ.0 )
$ RETURN
C
IF ( LSAME( UL, 'U' ) ) THEN
C
DO 20 J = 1, M
CALL DCOPY( MIN( J+1, M ), A(1,J), 1, DWORK(1,J), 1 )
CALL DSCAL( MIN( J+1, M ), LAMBDA, DWORK(1,J), 1 )
DWORK(J,J) = DWORK(J,J) + ONE
20 CONTINUE
C
IF ( LSAME( RC, 'R' ) ) THEN
TRANS = 'N'
C
C A is an upper Hessenberg matrix, row transformations.
C
DO 40 J = 1, M - 1
MJ = M - J
IF ( DWORK(J+1,J).NE.ZERO ) THEN
CALL DLARTG( DWORK(J,J), DWORK(J+1,J), C, S, R )
DWORK(J,J) = R
DWORK(J+1,J) = ZERO
CALL DROT( MJ, DWORK(J,J+1), LDDWOR, DWORK(J+1,J+1),
$ LDDWOR, C, S )
CALL DROT( 1, D(J), 1, D(J+1), 1, C, S )
END IF
40 CONTINUE
C
ELSE
TRANS = 'T'
C
C A is an upper Hessenberg matrix, column transformations.
C
DO 60 J = 1, M - 1
MJ = M - J
IF ( DWORK(MJ+1,MJ).NE.ZERO ) THEN
CALL DLARTG( DWORK(MJ+1,MJ+1), DWORK(MJ+1,MJ), C, S,
$ R )
DWORK(MJ+1,MJ+1) = R
DWORK(MJ+1,MJ) = ZERO
CALL DROT( MJ, DWORK(1,MJ+1), 1, DWORK(1,MJ), 1, C,
$ S )
CALL DROT( 1, D(MJ+1), 1, D(MJ), 1, C, S )
END IF
60 CONTINUE
C
END IF
ELSE
C
DO 80 J = 1, M
J1 = MAX( J - 1, 1 )
CALL DCOPY( M-J1+1, A(J1,J), 1, DWORK(J1,J), 1 )
CALL DSCAL( M-J1+1, LAMBDA, DWORK(J1,J), 1 )
DWORK(J,J) = DWORK(J,J) + ONE
80 CONTINUE
C
IF ( LSAME( RC, 'R' ) ) THEN
TRANS = 'N'
C
C A is a lower Hessenberg matrix, row transformations.
C
DO 100 J = 1, M - 1
MJ = M - J
IF ( DWORK(MJ,MJ+1).NE.ZERO ) THEN
CALL DLARTG( DWORK(MJ+1,MJ+1), DWORK(MJ,MJ+1), C, S,
$ R )
DWORK(MJ+1,MJ+1) = R
DWORK(MJ,MJ+1) = ZERO
CALL DROT( MJ, DWORK(MJ+1,1), LDDWOR, DWORK(MJ,1),
$ LDDWOR, C, S )
CALL DROT( 1, D(MJ+1), 1, D(MJ), 1, C, S )
END IF
100 CONTINUE
C
ELSE
TRANS = 'T'
C
C A is a lower Hessenberg matrix, column transformations.
C
DO 120 J = 1, M - 1
MJ = M - J
IF ( DWORK(J,J+1).NE.ZERO ) THEN
CALL DLARTG( DWORK(J,J), DWORK(J,J+1), C, S, R )
DWORK(J,J) = R
DWORK(J,J+1) = ZERO
CALL DROT( MJ, DWORK(J+1,J), 1, DWORK(J+1,J+1), 1, C,
$ S )
CALL DROT( 1, D(J), 1, D(J+1), 1, C, S )
END IF
120 CONTINUE
C
END IF
END IF
C
CALL DTRCON( '1-norm', UL, 'Non-unit', M, DWORK, LDDWOR, RCOND,
$ DWORK(1,M+1), IWORK, INFO )
IF ( RCOND.LE.TOL ) THEN
INFO = 1
ELSE
CALL DTRSV( UL, TRANS, 'Non-unit', M, DWORK, LDDWOR, D, 1 )
END IF
C
RETURN
C *** Last line of SB04RY ***
END
|