1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
SUBROUTINE SB06ND( N, M, KMAX, A, LDA, B, LDB, KSTAIR, U, LDU, F,
$ LDF, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct the minimum norm feedback matrix F to perform
C "deadbeat control" on a (A,B)-pair of a state-space model (which
C must be preliminarily reduced to upper "staircase" form using
C SLICOT Library routine AB01OD) such that the matrix R = A + BFU'
C is nilpotent.
C (The transformation matrix U reduces R to upper Schur form with
C zero blocks on its diagonal (of dimension KSTAIR(i)) and
C therefore contains bases for the i-th controllable subspaces,
C where i = 1,...,KMAX).
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The actual state dimension, i.e. the order of the
C matrix A. N >= 0.
C
C M (input) INTEGER
C The actual input dimension. M >= 0.
C
C KMAX (input) INTEGER
C The number of "stairs" in the staircase form as produced
C by SLICOT Library routine AB01OD. 0 <= KMAX <= N.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the transformed state-space matrix of the
C (A,B)-pair with triangular stairs, as produced by SLICOT
C Library routine AB01OD (with option STAGES = 'A').
C On exit, the leading N-by-N part of this array contains
C the matrix U'AU + U'BF.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the transformed triangular input matrix of the
C (A,B)-pair as produced by SLICOT Library routine AB01OD
C (with option STAGES = 'A').
C On exit, the leading N-by-M part of this array contains
C the matrix U'B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C KSTAIR (input) INTEGER array, dimension (KMAX)
C The leading KMAX elements of this array must contain the
C dimensions of each "stair" as produced by SLICOT Library
C routine AB01OD.
C
C U (input/output) DOUBLE PRECISION array, dimension (LDU,N)
C On entry, the leading N-by-N part of this array must
C contain either a transformation matrix (e.g. from a
C previous call to other SLICOT routine) or be initialised
C as the identity matrix.
C On exit, the leading N-by-N part of this array contains
C the product of the input matrix U and the state-space
C transformation matrix which reduces A + BFU' to real
C Schur form.
C
C LDU INTEGER
C The leading dimension of array U. LDU >= MAX(1,N).
C
C F (output) DOUBLE PRECISION array, dimension (LDF,N)
C The leading M-by-N part of this array contains the
C deadbeat feedback matrix F.
C
C LDF INTEGER
C The leading dimension of array F. LDF >= MAX(1,M).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (2*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Starting from the (A,B)-pair in "staircase form" with "triangular"
C stairs, dimensions KSTAIR(i+1) x KSTAIR(i), (described by the
C vector KSTAIR):
C
C | B | A * . . . * |
C | 1| 11 . . |
C | | A A . . |
C | | 21 22 . . |
C | | . . . |
C [ B | A ] = | | . . * |
C | | . . |
C | 0 | 0 |
C | | A A |
C | | r,r-1 rr |
C
C where the i-th diagonal block of A has dimension KSTAIR(i), for
C i = 1,2,...,r, the feedback matrix F is constructed recursively in
C r steps (where the number of "stairs" r is given by KMAX). In each
C step a unitary state-space transformation U and a part of F are
C updated in order to achieve the final form:
C
C | 0 A * . . . * |
C | 12 . . |
C | . . |
C | 0 A . . |
C | 23 . . |
C | . . |
C [ U'AU + U'BF ] = | . . * | .
C | . . |
C | |
C | A |
C | r-1,r|
C | |
C | 0 |
C
C
C REFERENCES
C
C [1] Van Dooren, P.
C Deadbeat control: a special inverse eigenvalue problem.
C BIT, 24, pp. 681-699, 1984.
C
C NUMERICAL ASPECTS
C
C The algorithm requires O((N + M) * N**2) operations and is mixed
C numerical stable (see [1]).
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Supersedes Release 2.0 routine SB06BD by M. Vanbegin, and
C P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C 1997, December 10; 2003, September 27.
C
C KEYWORDS
C
C Canonical form, deadbeat control, eigenvalue assignment, feedback
C control, orthogonal transformation, real Schur form, staircase
C form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, KMAX, LDA, LDB, LDF, LDU, M, N
C .. Array Arguments ..
INTEGER KSTAIR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), F(LDF,*), U(LDU,*)
C .. Local Scalars ..
INTEGER J, J0, JCUR, JKCUR, JMKCUR, KCUR, KK, KMIN,
$ KSTEP, MKCUR, NCONT
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DLACPY, DLARFG, DLASET, DLATZM,
$ DTRSM, XERBLA
C .. Executable Statements ..
C
INFO = 0
C
C Test the input scalar arguments.
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( KMAX.LT.0 .OR. KMAX.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDU.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -12
ELSE
NCONT = 0
C
DO 10 KK = 1, KMAX
NCONT = NCONT + KSTAIR(KK)
10 CONTINUE
C
IF( NCONT.GT.N )
$ INFO = -8
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB06ND', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
C
DO 120 KMIN = 1, KMAX
JCUR = NCONT
KSTEP = KMAX - KMIN
C
C Triangularize bottom part of A (if KSTEP > 0).
C
DO 40 KK = KMAX, KMAX - KSTEP + 1, -1
KCUR = KSTAIR(KK)
C
C Construct Ukk and store in Fkk.
C
DO 20 J = 1, KCUR
JMKCUR = JCUR - KCUR
CALL DCOPY( KCUR, A(JCUR,JMKCUR), LDA, F(1,JCUR), 1 )
CALL DLARFG( KCUR+1, A(JCUR,JCUR), F(1,JCUR), 1,
$ DWORK(JCUR) )
CALL DLASET( 'Full', 1, KCUR, ZERO, ZERO, A(JCUR,JMKCUR),
$ LDA )
C
C Backmultiply A and U with Ukk.
C
CALL DLATZM( 'Right', JCUR-1, KCUR+1, F(1,JCUR), 1,
$ DWORK(JCUR), A(1,JCUR), A(1,JMKCUR), LDA,
$ DWORK )
C
CALL DLATZM( 'Right', N, KCUR+1, F(1,JCUR), 1,
$ DWORK(JCUR), U(1,JCUR), U(1,JMKCUR), LDU,
$ DWORK(N+1) )
JCUR = JCUR - 1
20 CONTINUE
C
40 CONTINUE
C
C Eliminate diagonal block Aii by feedback Fi.
C
KCUR = KSTAIR(KMIN)
J0 = JCUR - KCUR + 1
MKCUR = M - KCUR + 1
C
C Solve for Fi and add B x Fi to A.
C
CALL DLACPY( 'Full', KCUR, KCUR, A(J0,J0), LDA, F(MKCUR,J0),
$ LDF )
CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', KCUR,
$ KCUR, -ONE, B(J0,MKCUR), LDB, F(MKCUR,J0), LDF )
IF ( J0.GT.1 )
$ CALL DGEMM( 'No transpose', 'No transpose', J0-1, KCUR,
$ KCUR, ONE, B(1,MKCUR), LDB, F(MKCUR,J0), LDF,
$ ONE, A(1,J0), LDA )
CALL DLASET( 'Full', KCUR, KCUR, ZERO, ZERO, A(J0,J0), LDA )
CALL DLASET( 'Full', M-KCUR, KCUR, ZERO, ZERO, F(1,J0), LDF )
C
IF ( KSTEP.NE.0 ) THEN
JKCUR = NCONT
C
C Premultiply A with Ukk.
C
DO 80 KK = KMAX, KMAX - KSTEP + 1, -1
KCUR = KSTAIR(KK)
JCUR = JKCUR - KCUR
C
DO 60 J = 1, KCUR
CALL DLATZM( 'Left', KCUR+1, N-JCUR+1, F(1,JKCUR), 1,
$ DWORK(JKCUR), A(JKCUR,JCUR),
$ A(JCUR,JCUR), LDA, DWORK(N+1) )
JCUR = JCUR - 1
JKCUR = JKCUR - 1
60 CONTINUE
C
80 CONTINUE
C
C Premultiply B with Ukk.
C
JCUR = JCUR + KCUR
JKCUR = JCUR + KCUR
C
DO 100 J = M, M - KCUR + 1, -1
CALL DLATZM( 'Left', KCUR+1, M-J+1, F(1,JKCUR), 1,
$ DWORK(JKCUR), B(JKCUR,J), B(JCUR,J), LDB,
$ DWORK(N+1) )
JCUR = JCUR - 1
JKCUR = JKCUR - 1
100 CONTINUE
C
END IF
120 CONTINUE
C
IF ( NCONT.NE.N )
$ CALL DLASET( 'Full', M, N-NCONT, ZERO, ZERO, F(1,NCONT+1),
$ LDF )
C
RETURN
C *** Last line of SB06ND ***
END
|