1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
SUBROUTINE SB08DD( DICO, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
$ NQ, NR, CR, LDCR, DR, LDDR, TOL, DWORK, LDWORK,
$ IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct, for a given system G = (A,B,C,D), a feedback matrix
C F, an orthogonal transformation matrix Z, and a gain matrix V,
C such that the systems
C
C Q = (Z'*(A+B*F)*Z, Z'*B*V, (C+D*F)*Z, D*V)
C and
C R = (Z'*(A+B*F)*Z, Z'*B*V, F*Z, V)
C
C provide a stable right coprime factorization of G in the form
C -1
C G = Q * R ,
C
C where G, Q and R are the corresponding transfer-function matrices
C and the denominator R is inner, that is, R'(-s)*R(s) = I in the
C continuous-time case, or R'(1/z)*R(z) = I in the discrete-time
C case. The Z matrix is not explicitly computed.
C
C Note: G must have no controllable poles on the imaginary axis
C for a continuous-time system, or on the unit circle for a
C discrete-time system. If the given state-space representation
C is not stabilizable, the unstabilizable part of the original
C system is automatically deflated and the order of the systems
C Q and R is accordingly reduced.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The dimension of the state vector, i.e. the order of the
C matrix A, and also the number of rows of the matrix B and
C the number of columns of the matrices C and CR. N >= 0.
C
C M (input) INTEGER
C The dimension of input vector, i.e. the number of columns
C of the matrices B, D and DR and the number of rows of the
C matrices CR and DR. M >= 0.
C
C P (input) INTEGER
C The dimension of output vector, i.e. the number of rows
C of the matrices C and D. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A. The matrix A must not
C have controllable eigenvalues on the imaginary axis, if
C DICO = 'C', or on the unit circle, if DICO = 'D'.
C On exit, the leading NQ-by-NQ part of this array contains
C the leading NQ-by-NQ part of the matrix Z'*(A+B*F)*Z, the
C state dynamics matrix of the numerator factor Q, in a
C real Schur form. The trailing NR-by-NR part of this matrix
C represents the state dynamics matrix of a minimal
C realization of the denominator factor R.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input/state matrix.
C On exit, the leading NQ-by-M part of this array contains
C the leading NQ-by-M part of the matrix Z'*B*V, the
C input/state matrix of the numerator factor Q. The last
C NR rows of this matrix form the input/state matrix of
C a minimal realization of the denominator factor R.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix C.
C On exit, the leading P-by-NQ part of this array contains
C the leading P-by-NQ part of the matrix (C+D*F)*Z,
C the state/output matrix of the numerator factor Q.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the input/output matrix.
C On exit, the leading P-by-M part of this array contains
C the matrix D*V representing the input/output matrix
C of the numerator factor Q.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C NQ (output) INTEGER
C The order of the resulting factors Q and R.
C Generally, NQ = N - NS, where NS is the number of
C uncontrollable eigenvalues outside the stability region.
C
C NR (output) INTEGER
C The order of the minimal realization of the factor R.
C Generally, NR is the number of controllable eigenvalues
C of A outside the stability region (the number of modified
C eigenvalues).
C
C CR (output) DOUBLE PRECISION array, dimension (LDCR,N)
C The leading M-by-NQ part of this array contains the
C leading M-by-NQ part of the feedback matrix F*Z, which
C reflects the eigenvalues of A lying outside the stable
C region to values which are symmetric with respect to the
C imaginary axis (if DICO = 'C') or the unit circle (if
C DICO = 'D'). The last NR columns of this matrix form the
C state/output matrix of a minimal realization of the
C denominator factor R.
C
C LDCR INTEGER
C The leading dimension of array CR. LDCR >= MAX(1,M).
C
C DR (output) DOUBLE PRECISION array, dimension (LDDR,M)
C The leading M-by-M part of this array contains the upper
C triangular matrix V of order M representing the
C input/output matrix of the denominator factor R.
C
C LDDR INTEGER
C The leading dimension of array DR. LDDR >= MAX(1,M).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The absolute tolerance level below which the elements of
C B are considered zero (used for controllability tests).
C If the user sets TOL <= 0, then an implicitly computed,
C default tolerance, defined by TOLDEF = N*EPS*NORM(B),
C is used instead, where EPS is the machine precision
C (see LAPACK Library routine DLAMCH) and NORM(B) denotes
C the 1-norm of B.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of working array DWORK.
C LDWORK >= MAX( 1, N*(N+5), M*(M+2), 4*M, 4*P ).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = K: K violations of the numerical stability condition
C NORM(F) <= 10*NORM(A)/NORM(B) occured during the
C assignment of eigenvalues.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction of A to a real Schur form failed;
C = 2: a failure was detected during the ordering of the
C real Schur form of A, or in the iterative process
C for reordering the eigenvalues of Z'*(A + B*F)*Z
C along the diagonal;
C = 3: if DICO = 'C' and the matrix A has a controllable
C eigenvalue on the imaginary axis, or DICO = 'D'
C and A has a controllable eigenvalue on the unit
C circle.
C
C METHOD
C
C The subroutine is based on the factorization algorithm of [1].
C
C REFERENCES
C
C [1] Varga A.
C A Schur method for computing coprime factorizations with inner
C denominators and applications in model reduction.
C Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires no more than 14N floating point
C operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, July 1998.
C Based on the RASP routine RCFID.
C
C REVISIONS
C
C Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C Feb. 1999, May 2003, A. Varga, DLR Oberpfaffenhofen.
C
C KEYWORDS
C
C Coprime factorization, eigenvalue, eigenvalue assignment,
C feedback control, pole placement, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, TEN, ZERO
PARAMETER ( ONE = 1.0D0, TEN = 1.0D1, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO
INTEGER INFO, IWARN, LDA, LDB, LDC, LDCR, LDD, LDDR,
$ LDWORK, M, N, NQ, NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), CR(LDCR,*),
$ D(LDD,*), DR(LDDR,*), DWORK(*)
C .. Local Scalars ..
LOGICAL DISCR
INTEGER I, IB, IB1, J, K, KFI, KV, KW, KWI, KWR, KZ, L,
$ L1, NB, NCUR, NFP, NLOW, NSUP
DOUBLE PRECISION ALPHA, BNORM, CS, PR, RMAX, SM, SN, TOLER,
$ WRKOPT, X, Y
C .. Local Arrays ..
DOUBLE PRECISION Z(4,4)
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE
LOGICAL LSAME
EXTERNAL DLAMCH, DLANGE, LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLAEXC, DLANV2, DLASET, DROT,
$ DTRMM, DTRMV, SB01FY, TB01LD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C .. Executable Statements ..
C
DISCR = LSAME( DICO, 'D' )
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( P.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -10
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -12
ELSE IF( LDCR.LT.MAX( 1, M ) ) THEN
INFO = -16
ELSE IF( LDDR.LT.MAX( 1, M ) ) THEN
INFO = -18
ELSE IF( LDWORK.LT.MAX( 1, N*(N+5), M*(M+2), 4*M, 4*P ) ) THEN
INFO = -21
END IF
IF( INFO.NE.0 )THEN
C
C Error return.
C
CALL XERBLA( 'SB08DD', -INFO )
RETURN
END IF
C
C Set DR = I and quick return if possible.
C
NR = 0
IF( MIN( M, P ).GT.0 )
$ CALL DLASET( 'Full', M, M, ZERO, ONE, DR, LDDR )
IF( MIN( N, M ).EQ.0 ) THEN
NQ = 0
DWORK(1) = ONE
RETURN
END IF
C
C Set F = 0 in the array CR.
C
CALL DLASET( 'Full', M, N, ZERO, ZERO, CR, LDCR )
C
C Compute the norm of B and set the default tolerance if necessary.
C
BNORM = DLANGE( '1-norm', N, M, B, LDB, DWORK )
TOLER = TOL
IF( TOLER.LE.ZERO )
$ TOLER = DBLE( N ) * BNORM * DLAMCH( 'Epsilon' )
IF( BNORM.LE.TOLER ) THEN
NQ = 0
DWORK(1) = ONE
RETURN
END IF
C
C Compute the bound for the numerical stability condition.
C
RMAX = TEN * DLANGE( '1-norm', N, N, A, LDA, DWORK ) / BNORM
C
C Allocate working storage.
C
KZ = 1
KWR = KZ + N*N
KWI = KWR + N
KW = KWI + N
C
C Reduce A to an ordered real Schur form using an orthogonal
C similarity transformation A <- Z'*A*Z and accumulate the
C transformations in Z. The separation of spectrum of A is
C performed such that the leading NFP-by-NFP submatrix of A
C corresponds to the "stable" eigenvalues which will be not
C modified. The bottom (N-NFP)-by-(N-NFP) diagonal block of A
C corresponds to the "unstable" eigenvalues to be modified.
C Apply the transformation to B and C: B <- Z'*B and C <- C*Z.
C
C Workspace needed: N*(N+2);
C Additional workspace: need 3*N;
C prefer larger.
C
IF( DISCR ) THEN
ALPHA = ONE
ELSE
ALPHA = ZERO
END IF
CALL TB01LD( DICO, 'Stable', 'General', N, M, P, ALPHA, A, LDA,
$ B, LDB, C, LDC, NFP, DWORK(KZ), N, DWORK(KWR),
$ DWORK(KWI), DWORK(KW), LDWORK-KW+1, INFO )
IF( INFO.NE.0 )
$ RETURN
C
WRKOPT = DWORK(KW) + DBLE( KW-1 )
C
C Perform the pole assignment if there exist "unstable" eigenvalues.
C
NQ = N
IF( NFP.LT.N ) THEN
KV = 1
KFI = KV + M*M
KW = KFI + 2*M
C
C Set the limits for the bottom diagonal block.
C
NLOW = NFP + 1
NSUP = N
C
C WHILE (NLOW <= NSUP) DO
10 IF( NLOW.LE.NSUP ) THEN
C
C Main loop for assigning one or two poles.
C
C Determine the dimension of the last block.
C
IB = 1
IF( NLOW.LT.NSUP ) THEN
IF( A(NSUP,NSUP-1).NE.ZERO ) IB = 2
END IF
L = NSUP - IB + 1
C
C Check the controllability of the last block.
C
IF( DLANGE( '1-norm', IB, M, B(L,1), LDB, DWORK(KW) )
$ .LE.TOLER ) THEN
C
C Deflate the uncontrollable block and resume the main
C loop.
C
NSUP = NSUP - IB
ELSE
C
C Determine the M-by-IB feedback matrix FI which assigns
C the selected IB poles for the pair
C ( A(L:L+IB-1,L:L+IB-1), B(L:L+IB-1,1:M) ).
C
C Workspace needed: M*(M+2).
C
CALL SB01FY( DISCR, IB, M, A(L,L), LDA, B(L,1), LDB,
$ DWORK(KFI), M, DWORK(KV), M, INFO )
IF( INFO.EQ.2 ) THEN
INFO = 3
RETURN
END IF
C
C Check for possible numerical instability.
C
IF( DLANGE( '1-norm', M, IB, DWORK(KFI), M, DWORK(KW) )
$ .GT.RMAX ) IWARN = IWARN + 1
C
C Update the state matrix A <-- A + B*[0 FI].
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', NSUP, IB, M,
$ ONE, B, LDB, DWORK(KFI), M, ONE, A(1,L),
$ LDA )
C
C Update the feedback matrix F <-- F + V*[0 FI] in CR.
C
IF( DISCR )
$ CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit',
$ M, IB, ONE, DR, LDDR, DWORK(KFI), M )
K = KFI
DO 30 J = L, L + IB - 1
DO 20 I = 1, M
CR(I,J) = CR(I,J) + DWORK(K)
K = K + 1
20 CONTINUE
30 CONTINUE
C
IF( DISCR ) THEN
C
C Update the input matrix B <-- B*V.
C
CALL DTRMM( 'Right', 'Upper', 'NoTranspose',
$ 'NonUnit', N, M, ONE, DWORK(KV), M, B,
$ LDB )
C
C Update the feedthrough matrix DR <-- DR*V.
C
K = KV
DO 40 I = 1, M
CALL DTRMV( 'Upper', 'Transpose', 'NonUnit',
$ M-I+1, DWORK(K), M, DR(I,I), LDDR )
K = K + M + 1
40 CONTINUE
END IF
C
IF( IB.EQ.2 ) THEN
C
C Put the 2x2 block in a standard form.
C
L1 = L + 1
CALL DLANV2( A(L,L), A(L,L1), A(L1,L), A(L1,L1),
$ X, Y, PR, SM, CS, SN )
C
C Apply the transformation to A, B, C and F.
C
IF( L1.LT.NSUP )
$ CALL DROT( NSUP-L1, A(L,L1+1), LDA, A(L1,L1+1),
$ LDA, CS, SN )
CALL DROT( L-1, A(1,L), 1, A(1,L1), 1, CS, SN )
CALL DROT( M, B(L,1), LDB, B(L1,1), LDB, CS, SN )
IF( P.GT.0 )
$ CALL DROT( P, C(1,L), 1, C(1,L1), 1, CS, SN )
CALL DROT( M, CR(1,L), 1, CR(1,L1), 1, CS, SN )
END IF
IF( NLOW+IB.LE.NSUP ) THEN
C
C Move the last block(s) to the leading position(s) of
C the bottom block.
C
C Workspace: need MAX(4*N, 4*M, 4*P).
C
NCUR = NSUP - IB
C WHILE (NCUR >= NLOW) DO
50 IF( NCUR.GE.NLOW ) THEN
C
C Loop for positioning of the last block.
C
C Determine the dimension of the current block.
C
IB1 = 1
IF( NCUR.GT.NLOW ) THEN
IF( A(NCUR,NCUR-1).NE.ZERO ) IB1 = 2
END IF
NB = IB1 + IB
C
C Initialize the local transformation matrix Z.
C
CALL DLASET( 'Full', NB, NB, ZERO, ONE, Z, 4 )
L = NCUR - IB1 + 1
C
C Exchange two adjacent blocks and accumulate the
C transformations in Z.
C
CALL DLAEXC( .TRUE., NB, A(L,L), LDA, Z, 4, 1, IB1,
$ IB, DWORK, INFO )
IF( INFO.NE.0 ) THEN
INFO = 2
RETURN
END IF
C
C Apply the transformation to the rest of A.
C
L1 = L + NB
IF( L1.LE.NSUP ) THEN
CALL DGEMM( 'Transpose', 'NoTranspose', NB,
$ NSUP-L1+1, NB, ONE, Z, 4, A(L,L1),
$ LDA, ZERO, DWORK, NB )
CALL DLACPY( 'Full', NB, NSUP-L1+1, DWORK, NB,
$ A(L,L1), LDA )
END IF
CALL DGEMM( 'NoTranspose', 'NoTranspose', L-1, NB,
$ NB, ONE, A(1,L), LDA, Z, 4, ZERO,
$ DWORK, N )
CALL DLACPY( 'Full', L-1, NB, DWORK, N, A(1,L),
$ LDA )
C
C Apply the transformation to B, C and F.
C
CALL DGEMM( 'Transpose', 'NoTranspose', NB, M, NB,
$ ONE, Z, 4, B(L,1), LDB, ZERO, DWORK,
$ NB )
CALL DLACPY( 'Full', NB, M, DWORK, NB, B(L,1),
$ LDB )
C
IF( P.GT.0 ) THEN
CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NB,
$ NB, ONE, C(1,L), LDC, Z, 4, ZERO,
$ DWORK, P )
CALL DLACPY( 'Full', P, NB, DWORK, P,
$ C(1,L), LDC )
END IF
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, NB,
$ NB, ONE, CR(1,L), LDCR, Z, 4, ZERO,
$ DWORK, M )
CALL DLACPY( 'Full', M, NB, DWORK, M, CR(1,L),
$ LDCR )
C
NCUR = NCUR - IB1
GO TO 50
END IF
C END WHILE 50
C
END IF
NLOW = NLOW + IB
END IF
GO TO 10
END IF
C END WHILE 10
C
NQ = NSUP
NR = NSUP - NFP
C
C Annihilate the elements below the first subdiagonal of A.
C
IF( NQ.GT.2 )
$ CALL DLASET( 'Lower', NQ-2, NQ-2, ZERO, ZERO, A(3,1), LDA )
END IF
C
C Compute C <-- CQ = C + D*F and D <-- DQ = D*DR.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NQ, M, ONE, D, LDD,
$ CR, LDCR, ONE, C, LDC )
IF( DISCR )
$ CALL DTRMM( 'Right', 'Upper', 'NoTranspose', 'NonUnit', P, M,
$ ONE, DR, LDDR, D, LDD )
C
DWORK(1) = MAX( WRKOPT, DBLE( MAX( M*(M+2), 4*M, 4*P ) ) )
C
RETURN
C *** Last line of SB08DD ***
END
|