1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
SUBROUTINE SB08ED( DICO, N, M, P, ALPHA, A, LDA, B, LDB, C, LDC,
$ D, LDD, NQ, NR, BR, LDBR, DR, LDDR, TOL, DWORK,
$ LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct, for a given system G = (A,B,C,D), an output
C injection matrix H and an orthogonal transformation matrix Z, such
C that the systems
C
C Q = (Z'*(A+H*C)*Z, Z'*(B+H*D), C*Z, D)
C and
C R = (Z'*(A+H*C)*Z, Z'*H, C*Z, I)
C
C provide a stable left coprime factorization of G in the form
C -1
C G = R * Q,
C
C where G, Q and R are the corresponding transfer-function matrices.
C The resulting state dynamics matrix of the systems Q and R has
C eigenvalues lying inside a given stability domain.
C The Z matrix is not explicitly computed.
C
C Note: If the given state-space representation is not detectable,
C the undetectable part of the original system is automatically
C deflated and the order of the systems Q and R is accordingly
C reduced.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The dimension of the state vector, i.e. the order of the
C matrix A, and also the number of rows of the matrices B
C and BR, and the number of columns of the matrix C.
C N >= 0.
C
C M (input) INTEGER
C The dimension of input vector, i.e. the number of columns
C of the matrices B and D. M >= 0.
C
C P (input) INTEGER
C The dimension of output vector, i.e. the number of rows
C of the matrices C, D and DR, and the number of columns of
C the matrices BR and DR. P >= 0.
C
C ALPHA (input) DOUBLE PRECISION array, dimension (2)
C ALPHA(1) contains the desired stability degree to be
C assigned for the eigenvalues of A+H*C, and ALPHA(2)
C the stability margin. The eigenvalues outside the
C ALPHA(2)-stability region will be assigned to have the
C real parts equal to ALPHA(1) < 0 and unmodified
C imaginary parts for a continuous-time system
C (DICO = 'C'), or moduli equal to 0 <= ALPHA(2) < 1
C for a discrete-time system (DICO = 'D').
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, the leading NQ-by-NQ part of this array contains
C the leading NQ-by-NQ part of the matrix Z'*(A+H*C)*Z, the
C state dynamics matrix of the numerator factor Q, in a
C real Schur form. The leading NR-by-NR part of this matrix
C represents the state dynamics matrix of a minimal
C realization of the denominator factor R.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension
C (LDB,MAX(M,P))
C On entry, the leading N-by-M part of this array must
C contain the input/state matrix of the system.
C On exit, the leading NQ-by-M part of this array contains
C the leading NQ-by-M part of the matrix Z'*(B+H*D), the
C input/state matrix of the numerator factor Q.
C The remaining part of this array is needed as workspace.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix of the system.
C On exit, the leading P-by-NQ part of this array contains
C the leading P-by-NQ part of the matrix C*Z, the
C state/output matrix of the numerator factor Q.
C The first NR columns of this array represent the
C state/output matrix of a minimal realization of the
C denominator factor R.
C The remaining part of this array is needed as workspace.
C
C LDC INTEGER
C The leading dimension of array C.
C LDC >= MAX(1,M,P), if N > 0.
C LDC >= 1, if N = 0.
C
C D (input) DOUBLE PRECISION array, dimension (LDD,MAX(M,P))
C The leading P-by-M part of this array must contain the
C input/output matrix. D represents also the input/output
C matrix of the numerator factor Q.
C This array is modified internally, but restored on exit.
C The remaining part of this array is needed as workspace.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,M,P).
C
C NQ (output) INTEGER
C The order of the resulting factors Q and R.
C Generally, NQ = N - NS, where NS is the number of
C unobservable eigenvalues outside the stability region.
C
C NR (output) INTEGER
C The order of the minimal realization of the factor R.
C Generally, NR is the number of observable eigenvalues
C of A outside the stability region (the number of modified
C eigenvalues).
C
C BR (output) DOUBLE PRECISION array, dimension (LDBR,P)
C The leading NQ-by-P part of this array contains the
C leading NQ-by-P part of the output injection matrix
C Z'*H, which moves the eigenvalues of A lying outside
C the ALPHA-stable region to values on the ALPHA-stability
C boundary. The first NR rows of this matrix form the
C input/state matrix of a minimal realization of the
C denominator factor R.
C
C LDBR INTEGER
C The leading dimension of array BR. LDBR >= MAX(1,N).
C
C DR (output) DOUBLE PRECISION array, dimension (LDDR,P)
C The leading P-by-P part of this array contains an
C identity matrix representing the input/output matrix
C of the denominator factor R.
C
C LDDR INTEGER
C The leading dimension of array DR. LDDR >= MAX(1,P).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The absolute tolerance level below which the elements of
C C are considered zero (used for observability tests).
C If the user sets TOL <= 0, then an implicitly computed,
C default tolerance, defined by TOLDEF = N*EPS*NORM(C),
C is used instead, where EPS is the machine precision
C (see LAPACK Library routine DLAMCH) and NORM(C) denotes
C the infinity-norm of C.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of working array DWORK.
C LDWORK >= MAX( 1, N*P + MAX( N*(N+5), 5*P, 4*M ) ).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = K: K violations of the numerical stability condition
C NORM(H) <= 10*NORM(A)/NORM(C) occured during the
C assignment of eigenvalues.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction of A to a real Schur form failed;
C = 2: a failure was detected during the ordering of the
C real Schur form of A, or in the iterative process
C for reordering the eigenvalues of Z'*(A + H*C)*Z
C along the diagonal.
C
C METHOD
C
C The subroutine uses the right coprime factorization algorithm
C of [1] applied to G'.
C
C REFERENCES
C
C [1] Varga A.
C Coprime factors model reduction method based on
C square-root balancing-free techniques.
C System Analysis, Modelling and Simulation,
C vol. 11, pp. 303-311, 1993.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires no more than 14N floating point
C operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, July 1998.
C Based on the RASP routine LCFS.
C
C REVISIONS
C
C Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C May 2003, A. Varga, DLR Oberpfaffenhofen.
C Nov 2003, A. Varga, DLR Oberpfaffenhofen.
C Sep. 2005, A. Varga, German Aerospace Center.
C
C KEYWORDS
C
C Coprime factorization, eigenvalue, eigenvalue assignment,
C feedback control, pole placement, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO
INTEGER INFO, IWARN, LDA, LDB, LDBR, LDC, LDD, LDDR,
$ LDWORK, M, N, NQ, NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ALPHA(*), B(LDB,*), BR(LDBR,*),
$ C(LDC,*), D(LDD,*), DR(LDDR,*), DWORK(*)
C .. Local Scalars ..
LOGICAL DISCR
INTEGER KBR, KW
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External subroutines ..
EXTERNAL AB07MD, DLASET, MA02AD, MA02BD, SB08FD, TB01XD,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C .. Executable Statements ..
C
DISCR = LSAME( DICO, 'D' )
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT.( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( P.LT.0 ) THEN
INFO = -4
ELSE IF( ( DISCR .AND. ( ALPHA(1).LT.ZERO .OR. ALPHA(1).GE.ONE
$ .OR. ALPHA(2).LT.ZERO .OR. ALPHA(2).GE.ONE ) )
$ .OR.
$ ( .NOT.DISCR .AND. ( ALPHA(1).GE.ZERO .OR. ALPHA(2).GE.ZERO )
$ ) ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.1 .OR. ( N.GT.0 .AND. LDC.LT.MAX( M, P ) ) )
$ THEN
INFO = -11
ELSE IF( LDD.LT.MAX( 1, M, P ) ) THEN
INFO = -13
ELSE IF( LDBR.LT.MAX( 1, N ) ) THEN
INFO = -17
ELSE IF( LDDR.LT.MAX( 1, P ) ) THEN
INFO = -19
ELSE IF( LDWORK.LT.MAX( 1, N*P + MAX( N*(N+5), 5*P, 4*M ) ) ) THEN
INFO = -22
END IF
IF( INFO.NE.0 )THEN
C
C Error return.
C
CALL XERBLA( 'SB08ED', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, P ).EQ.0 ) THEN
NQ = 0
NR = 0
DWORK(1) = ONE
CALL DLASET( 'Full', P, P, ZERO, ONE, DR, LDDR )
RETURN
END IF
C
C Compute the dual system G' = (A',C',B',D').
C
CALL AB07MD( 'D', N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
$ INFO )
C
C Compute the right coprime factorization of G' with
C prescribed stability degree.
C
C Workspace needed: P*N;
C Additional workspace: need MAX( N*(N+5), 5*P, 4*M );
C prefer larger.
C
KBR = 1
KW = KBR + P*N
CALL SB08FD( DICO, N, P, M, ALPHA, A, LDA, B, LDB, C, LDC, D, LDD,
$ NQ, NR, DWORK(KBR), P, DR, LDDR, TOL, DWORK(KW),
$ LDWORK-KW+1, IWARN, INFO )
IF( INFO.EQ.0 ) THEN
C
C Determine the elements of the left coprime factorization from
C those of the computed right coprime factorization and make the
C state-matrix upper real Schur.
C
CALL TB01XD( 'D', NQ, P, M, MAX( 0, NQ-1 ), MAX( 0, NQ-1 ),
$ A, LDA, B, LDB, C, LDC, D, LDD, INFO )
C
CALL MA02AD( 'Full', P, NQ, DWORK(KBR), P, BR, LDBR )
CALL MA02BD( 'Left', NQ, P, BR, LDBR )
C
END IF
C
DWORK(1) = DWORK(KW) + DBLE( KW-1 )
C
RETURN
C *** Last line of SB08ED ***
END
|