File: SB08ED.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (359 lines) | stat: -rw-r--r-- 13,586 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
      SUBROUTINE SB08ED( DICO, N, M, P, ALPHA, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, NQ, NR, BR, LDBR, DR, LDDR, TOL, DWORK,
     $                   LDWORK, IWARN, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To construct, for a given system G = (A,B,C,D), an output
C     injection matrix H and an orthogonal transformation matrix Z, such
C     that the systems
C
C          Q = (Z'*(A+H*C)*Z, Z'*(B+H*D), C*Z, D)
C     and
C          R = (Z'*(A+H*C)*Z, Z'*H, C*Z, I)
C
C     provide a stable left coprime factorization of G in the form
C                   -1
C              G = R  * Q,
C
C     where G, Q and R are the corresponding transfer-function matrices.
C     The resulting state dynamics matrix of the systems Q and R has
C     eigenvalues lying inside a given stability domain.
C     The Z matrix is not explicitly computed.
C
C     Note: If the given state-space representation is not detectable,
C     the undetectable part of the original system is automatically
C     deflated and the order of the systems Q and R is accordingly
C     reduced.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the original system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The dimension of the state vector, i.e. the order of the
C             matrix A, and also the number of rows of the matrices B
C             and BR, and the number of columns of the matrix C.
C             N >= 0.
C
C     M       (input) INTEGER
C             The dimension of input vector, i.e. the number of columns
C             of the matrices B and D.  M >= 0.
C
C     P       (input) INTEGER
C             The dimension of output vector, i.e. the number of rows
C             of the matrices C, D and DR, and the number of columns of
C             the matrices BR and DR.  P >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION array, dimension (2)
C             ALPHA(1) contains the desired stability degree to be
C             assigned for the eigenvalues of A+H*C, and ALPHA(2)
C             the stability margin. The eigenvalues outside the
C             ALPHA(2)-stability region will be assigned to have the
C             real parts equal to ALPHA(1) < 0 and unmodified
C             imaginary parts for a continuous-time system
C             (DICO = 'C'), or moduli equal to 0 <= ALPHA(2) < 1
C             for a discrete-time system (DICO = 'D').
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, the leading NQ-by-NQ part of this array contains
C             the leading NQ-by-NQ part of the matrix Z'*(A+H*C)*Z, the
C             state dynamics matrix of the numerator factor Q, in a
C             real Schur form. The leading NR-by-NR part of this matrix
C             represents the state dynamics matrix of a minimal
C             realization of the denominator factor R.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension
C             (LDB,MAX(M,P))
C             On entry, the leading N-by-M part of this array must
C             contain the input/state matrix of the system.
C             On exit, the leading NQ-by-M part of this array contains
C             the leading NQ-by-M part of the matrix Z'*(B+H*D), the
C             input/state matrix of the numerator factor Q.
C             The remaining part of this array is needed as workspace.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix of the system.
C             On exit, the leading P-by-NQ part of this array contains
C             the leading P-by-NQ part of the matrix C*Z, the
C             state/output matrix of the numerator factor Q.
C             The first NR columns of this array represent the
C             state/output matrix of a minimal realization of the
C             denominator factor R.
C             The remaining part of this array is needed as workspace.
C
C     LDC     INTEGER
C             The leading dimension of array C.
C             LDC >= MAX(1,M,P), if N > 0.
C             LDC >= 1,          if N = 0.
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,MAX(M,P))
C             The leading P-by-M part of this array must contain the
C             input/output matrix. D represents also the input/output
C             matrix of the numerator factor Q.
C             This array is modified internally, but restored on exit.
C             The remaining part of this array is needed as workspace.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,M,P).
C
C     NQ      (output) INTEGER
C             The order of the resulting factors Q and R.
C             Generally, NQ = N - NS, where NS is the number of
C             unobservable eigenvalues outside the stability region.
C
C     NR      (output) INTEGER
C             The order of the minimal realization of the factor R.
C             Generally, NR is the number of observable eigenvalues
C             of A outside the stability region (the number of modified
C             eigenvalues).
C
C     BR      (output) DOUBLE PRECISION array, dimension (LDBR,P)
C             The leading NQ-by-P part of this array contains the
C             leading NQ-by-P part of the output injection matrix
C             Z'*H, which moves the eigenvalues of A lying outside
C             the ALPHA-stable region to values on the ALPHA-stability
C             boundary. The first NR rows of this matrix form the
C             input/state matrix of a minimal realization of the
C             denominator factor R.
C
C     LDBR    INTEGER
C             The leading dimension of array BR.  LDBR >= MAX(1,N).
C
C     DR      (output) DOUBLE PRECISION array, dimension (LDDR,P)
C             The leading P-by-P part of this array contains an
C             identity matrix representing the input/output matrix
C             of the denominator factor R.
C
C     LDDR    INTEGER
C             The leading dimension of array DR.  LDDR >= MAX(1,P).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The absolute tolerance level below which the elements of
C             C are considered zero (used for observability tests).
C             If the user sets TOL <= 0, then an implicitly computed,
C             default tolerance, defined by  TOLDEF = N*EPS*NORM(C),
C             is used instead, where EPS is the machine precision
C             (see LAPACK Library routine DLAMCH) and NORM(C) denotes
C             the infinity-norm of C.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of working array DWORK.
C             LDWORK >= MAX( 1, N*P + MAX( N*(N+5), 5*P, 4*M ) ).
C             For optimum performance LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = K:  K violations of the numerical stability condition
C                   NORM(H) <= 10*NORM(A)/NORM(C) occured during the
C                   assignment of eigenvalues.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction of A to a real Schur form failed;
C             = 2:  a failure was detected during the ordering of the
C                   real Schur form of A, or in the iterative process
C                   for reordering the eigenvalues of Z'*(A + H*C)*Z
C                   along the diagonal.
C
C     METHOD
C
C     The subroutine uses the right coprime factorization algorithm
C     of [1] applied to G'.
C
C     REFERENCES
C
C     [1] Varga A.
C         Coprime factors model reduction method based on
C         square-root balancing-free techniques.
C         System Analysis, Modelling and Simulation,
C         vol. 11, pp. 303-311, 1993.
C
C     NUMERICAL ASPECTS
C                                            3
C     The algorithm requires no more than 14N  floating point
C     operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, July 1998.
C     Based on the RASP routine LCFS.
C
C     REVISIONS
C
C     Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C     Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C     May  2003, A. Varga, DLR Oberpfaffenhofen.
C     Nov  2003, A. Varga, DLR Oberpfaffenhofen.
C     Sep. 2005, A. Varga, German Aerospace Center.
C
C     KEYWORDS
C
C     Coprime factorization, eigenvalue, eigenvalue assignment,
C     feedback control, pole placement, state-space model.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO
      INTEGER           INFO, IWARN, LDA, LDB, LDBR, LDC, LDD, LDDR,
     $                  LDWORK, M, N, NQ, NR, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), ALPHA(*), B(LDB,*), BR(LDBR,*),
     $                  C(LDC,*), D(LDD,*), DR(LDDR,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           DISCR
      INTEGER           KBR, KW
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External subroutines ..
      EXTERNAL          AB07MD, DLASET, MA02AD, MA02BD, SB08FD, TB01XD,
     $                  XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX, MIN
C     .. Executable Statements ..
C
      DISCR = LSAME( DICO, 'D' )
      IWARN = 0
      INFO  = 0
C
C     Check the scalar input parameters.
C
      IF( .NOT.( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( ( DISCR .AND. ( ALPHA(1).LT.ZERO .OR. ALPHA(1).GE.ONE
     $                  .OR.   ALPHA(2).LT.ZERO .OR. ALPHA(2).GE.ONE ) )
     $    .OR.
     $    ( .NOT.DISCR .AND. ( ALPHA(1).GE.ZERO .OR. ALPHA(2).GE.ZERO )
     $    ) ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.1 .OR. ( N.GT.0 .AND. LDC.LT.MAX( M, P ) ) )
     $      THEN
         INFO = -11
      ELSE IF( LDD.LT.MAX( 1, M, P ) ) THEN
         INFO = -13
      ELSE IF( LDBR.LT.MAX( 1, N ) ) THEN
         INFO = -17
      ELSE IF( LDDR.LT.MAX( 1, P ) ) THEN
         INFO = -19
      ELSE IF( LDWORK.LT.MAX( 1, N*P + MAX( N*(N+5), 5*P, 4*M ) ) ) THEN
         INFO = -22
      END IF
      IF( INFO.NE.0 )THEN
C
C        Error return.
C
         CALL XERBLA( 'SB08ED', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( N, P ).EQ.0 ) THEN
         NQ = 0
         NR = 0
         DWORK(1) = ONE
         CALL DLASET( 'Full', P, P, ZERO, ONE, DR, LDDR )
         RETURN
      END IF
C
C     Compute the dual system G' = (A',C',B',D').
C
      CALL AB07MD( 'D', N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
     $             INFO )
C
C     Compute the right coprime factorization of G' with
C     prescribed stability degree.
C
C     Workspace needed:      P*N;
C     Additional workspace:  need  MAX( N*(N+5), 5*P, 4*M );
C                            prefer larger.
C
      KBR = 1
      KW  = KBR + P*N
      CALL SB08FD( DICO, N, P, M, ALPHA, A, LDA, B, LDB, C, LDC, D, LDD,
     $             NQ, NR, DWORK(KBR), P, DR, LDDR, TOL, DWORK(KW),
     $             LDWORK-KW+1, IWARN, INFO )
      IF( INFO.EQ.0 ) THEN
C
C        Determine the elements of the left coprime factorization from
C        those of the computed right coprime factorization and make the
C        state-matrix upper real Schur.
C
         CALL TB01XD( 'D', NQ, P, M, MAX( 0, NQ-1 ), MAX( 0, NQ-1 ),
     $                A, LDA, B, LDB, C, LDC, D, LDD, INFO )
C
         CALL MA02AD( 'Full', P, NQ, DWORK(KBR), P, BR, LDBR )
         CALL MA02BD( 'Left', NQ, P, BR, LDBR )
C
      END IF
C
      DWORK(1) = DWORK(KW) + DBLE( KW-1 )
C
      RETURN
C *** Last line of SB08ED ***
      END