1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
SUBROUTINE SB08HD( N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, CR,
$ LDCR, DR, LDDR, IWORK, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct the state-space representation for the system
C G = (A,B,C,D) from the factors Q = (AQR,BQR,CQ,DQ) and
C R = (AQR,BQR,CR,DR) of its right coprime factorization
C -1
C G = Q * R ,
C
C where G, Q and R are the corresponding transfer-function matrices.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. Also the number of rows of the
C matrix B and the number of columns of the matrices C and
C CR. N represents the order of the systems Q and R.
C N >= 0.
C
C M (input) INTEGER
C The dimension of input vector. Also the number of columns
C of the matrices B, D and DR and the number of rows of the
C matrices CR and DR. M >= 0.
C
C P (input) INTEGER
C The dimension of output vector. Also the number of rows
C of the matrices C and D. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix AQR of the systems
C Q and R.
C On exit, the leading N-by-N part of this array contains
C the state dynamics matrix of the system G.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input/state matrix BQR of the systems Q and R.
C On exit, the leading N-by-M part of this array contains
C the input/state matrix of the system G.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix CQ of the system Q.
C On exit, the leading P-by-N part of this array contains
C the state/output matrix of the system G.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the input/output matrix DQ of the system Q.
C On exit, the leading P-by-M part of this array contains
C the input/output matrix of the system G.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C CR (input) DOUBLE PRECISION array, dimension (LDCR,N)
C The leading M-by-N part of this array must contain the
C state/output matrix CR of the system R.
C
C LDCR INTEGER
C The leading dimension of array CR. LDCR >= MAX(1,M).
C
C DR (input/output) DOUBLE PRECISION array, dimension (LDDR,M)
C On entry, the leading M-by-M part of this array must
C contain the input/output matrix DR of the system R.
C On exit, the leading M-by-M part of this array contains
C the LU factorization of the matrix DR, as computed by
C LAPACK Library routine DGETRF.
C
C LDDR INTEGER
C The leading dimension of array DR. LDDR >= MAX(1,M).
C
C Workspace
C
C IWORK INTEGER array, dimension (M)
C
C DWORK DOUBLE PRECISION array, dimension (MAX(1,4*M))
C On exit, DWORK(1) contains an estimate of the reciprocal
C condition number of the matrix DR.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the matrix DR is singular;
C = 2: the matrix DR is numerically singular (warning);
C the calculations continued.
C
C METHOD
C
C The subroutine computes the matrices of the state-space
C representation G = (A,B,C,D) by using the formulas:
C
C -1 -1
C A = AQR - BQR * DR * CR, B = BQR * DR ,
C -1 -1
C C = CQ - DQ * DR * CR, D = DQ * DR .
C
C REFERENCES
C
C [1] Varga A.
C Coprime factors model reduction method based on
C square-root balancing-free techniques.
C System Analysis, Modelling and Simulation,
C vol. 11, pp. 303-311, 1993.
C
C CONTRIBUTOR
C
C C. Oara and A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, July 1998.
C Based on the RASP routine RCFI.
C V. Sima, Research Institute for Informatics, Bucharest, Nov. 1998,
C full BLAS 3 version.
C
C REVISIONS
C
C Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C Mar. 2000, V. Sima, Research Institute for Informatics, Bucharest.
C
C KEYWORDS
C
C Coprime factorization, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDCR, LDD, LDDR, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), CR(LDCR,*),
$ D(LDD,*), DR(LDDR,*), DWORK(*)
INTEGER IWORK(*)
C .. Local Scalars
DOUBLE PRECISION DRNORM, RCOND
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE
C .. External Subroutines ..
EXTERNAL DGECON, DGEMM, DGETRF, DTRSM, MA02GD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
INFO = 0
C
C Check the scalar input parameters.
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -9
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -11
ELSE IF( LDCR.LT.MAX( 1, M ) ) THEN
INFO = -13
ELSE IF( LDDR.LT.MAX( 1, M ) ) THEN
INFO = -15
END IF
IF( INFO.NE.0 )THEN
C
C Error return.
C
CALL XERBLA( 'SB08HD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( M.EQ.0 )THEN
DWORK(1) = ONE
RETURN
END IF
C
C Factor the matrix DR. First, compute the 1-norm.
C
DRNORM = DLANGE( '1-norm', M, M, DR, LDDR, DWORK )
CALL DGETRF( M, M, DR, LDDR, IWORK, INFO )
IF( INFO.NE.0 ) THEN
INFO = 1
DWORK(1) = ZERO
RETURN
END IF
C -1
C Compute B = BQR * DR , using the factorization P*DR = L*U.
C
CALL DTRSM( 'Right', 'Upper', 'NoTranspose', 'NonUnit', N, M, ONE,
$ DR, LDDR, B, LDB )
CALL DTRSM( 'Right', 'Lower', 'NoTranspose', 'Unit', N, M, ONE,
$ DR, LDDR, B, LDB )
CALL MA02GD( N, B, LDB, 1, M, IWORK, -1 )
C -1
C Compute A = AQR - BQR * DR * CR.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, M, -ONE, B, LDB,
$ CR, LDCR, ONE, A, LDA )
C -1
C Compute D = DQ * DR .
C
CALL DTRSM( 'Right', 'Upper', 'NoTranspose', 'NonUnit', P, M, ONE,
$ DR, LDDR, D, LDD )
CALL DTRSM( 'Right', 'Lower', 'NoTranspose', 'Unit', P, M, ONE,
$ DR, LDDR, D, LDD )
CALL MA02GD( P, D, LDD, 1, M, IWORK, -1 )
C -1
C Compute C = CQ - DQ * DR * CR.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', P, N, M, -ONE, D, LDD,
$ CR, LDCR, ONE, C, LDC )
C
C Estimate the reciprocal condition number of DR.
C Workspace 4*M.
C
CALL DGECON( '1-norm', M, DR, LDDR, DRNORM, RCOND, DWORK, IWORK,
$ INFO )
IF( RCOND.LE.DLAMCH( 'Epsilon' ) )
$ INFO = 2
C
DWORK(1) = RCOND
C
RETURN
C *** Last line of SB08HD ***
END
|