File: SB08ND.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (382 lines) | stat: -rw-r--r-- 12,937 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
      SUBROUTINE SB08ND( ACONA, DA, A, RES, E, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute a real polynomial E(z) such that
C
C        (a)  E(1/z) * E(z) = A(1/z) * A(z) and
C        (b)  E(z) is stable - that is, E(z) has no zeros with modulus
C             greater than 1,
C
C     which corresponds to computing the spectral factorization of the
C     real polynomial A(z) arising from discrete optimality problems.
C
C     The input polynomial may be supplied either in the form
C
C     A(z) = a(0) + a(1) * z + ... + a(DA) * z**DA
C
C     or as
C
C     B(z) = A(1/z) * A(z)
C          = b(0) + b(1) * (z + 1/z) + ... + b(DA) * (z**DA + 1/z**DA)
C                                                                    (1)
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     ACONA   CHARACTER*1
C             Indicates whether the coefficients of A(z) or B(z) =
C             A(1/z) * A(z) are to be supplied as follows:
C             = 'A':  The coefficients of A(z) are to be supplied;
C             = 'B':  The coefficients of B(z) are to be supplied.
C
C     Input/Output Parameters
C
C     DA      (input) INTEGER
C             The degree of the polynomials A(z) and E(z).  DA >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (DA+1)
C             On entry, if ACONA = 'A', this array must contain the
C             coefficients of the polynomial A(z) in increasing powers
C             of z, and if ACONA = 'B', this array must contain the
C             coefficients b ,b ,...,b   of the polynomial B(z) in
C                           0  1      DA
C             equation (1). That is, A(i) = b    for i = 1,2,...,DA+1.
C                                            i-1
C             On exit, this array contains the coefficients of the
C             polynomial B(z) in eqation (1). Specifically, A(i)
C             contains b   ,  for i = 1,2,...DA+1.
C                       i-1
C
C     RES     (output) DOUBLE PRECISION
C             An estimate of the accuracy with which the coefficients of
C             the polynomial E(z) have been computed (see also METHOD
C             and NUMERICAL ASPECTS).
C
C     E       (output) DOUBLE PRECISION array, dimension (DA+1)
C             The coefficients of the spectral factor E(z) in increasing
C             powers of z.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= 5*DA+5.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 2:  if on entry, ACONA = 'B' but the supplied
C                   coefficients of the polynomial B(z) are not the
C                   coefficients of A(1/z) * A(z) for some real A(z);
C                   in this case, RES and E are unassigned;
C             = 3:  if the iterative process (see METHOD) has failed to
C                   converge in 30 iterations;
C             = 4:  if the last computed iterate (see METHOD) is
C                   unstable. If ACONA = 'B', then the supplied
C                   coefficients of the polynomial B(z) may not be the
C                   coefficients of A(1/z) * A(z) for some real A(z).
C
C     METHOD
C         _                                               _
C     Let A(z) be the conjugate polynomial of A(z), i.e., A(z) = A(1/z).
C
C     The method used by the routine is based on applying the
C     Newton-Raphson iteration to the function
C               _       _
C        F(e) = A * A - e * e,
C
C     which leads to the iteration formulae (see [1] and [2])
C
C        _(i)   (i)  _(i)   (i)     _      )
C        q   * x   + x   * q    = 2 A * A  )
C                                          )   for i = 0, 1, 2,...
C         (i+1)    (i)   (i)               )
C        q     = (q   + x   )/2            )
C
C     The iteration starts from
C
C         (0)                                        DA
C        q   (z) = (b(0) + b(1) * z + ... + b(DA) * z  ) / SQRT( b(0))
C
C     which is a Hurwitz polynomial that has no zeros in the closed unit
C                                            (i)
C     circle (see [2], Theorem 3). Then lim q   = e, the convergence is
C     uniform and e is a Hurwitz polynomial.
C
C     The iterates satisfy the following conditions:
C              (i)
C        (a)  q    has no zeros in the closed unit circle,
C              (i)     (i-1)
C        (b)  q    <= q     and
C              0       0
C              DA   (i) 2    DA     2
C        (c)  SUM (q   )  - SUM (A )  >= 0.
C             k=0   k       k=0   k
C                                     (i)
C     The iterative process stops if q    violates (a), (b) or (c),
C     or if the condition
C                       _(i) (i)  _
C        (d)  RES  = ||(q   q   - A A)|| < tol,
C
C     is satisfied, where || . || denotes the largest coefficient of
C                     _(i) (i)  _
C     the polynomial (q   q   - A A) and tol is an estimate of the
C                                                    _(i)  (i)
C     rounding error in the computed coefficients of q    q   . If
C                                            (i-1)
C     condition (a) or (b) is violated then q      is taken otherwise
C      (i)
C     q    is used. Thus the computed reciprocal polynomial E(z) = z**DA
C     * q(1/z) is stable. If there is no convergence after 30 iterations
C     then the routine returns with the Error Indicator (INFO) set to 3,
C     and the value of RES may indicate whether or not the last computed
C     iterate is close to the solution.
C                                               (0)
C     If ACONA = 'B', then it is possible that q    is not a Hurwitz
C     polynomial, in which case the equation e(1/z) * e(z) = B(z) has no
C     real solution (see [2], Theorem 3).
C
C     REFERENCES
C
C     [1] Kucera, V.
C         Discrete Linear Control, The polynomial Approach.
C         John Wiley & Sons, Chichester, 1979.
C
C     [2] Vostry, Z.
C         New Algorithm for Polynomial Spectral Factorization with
C         Quadratic Convergence I.
C         Kybernetika, 11, pp. 415-422, 1975.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C     Supersedes Release 2.0 routine SB08BD by F. Delebecque and
C     A.J. Geurts.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Factorization, Laplace transform, optimal control, optimal
C     filtering, polynomial operations, spectral factorization, zeros.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, HALF, ONE, TWO
      PARAMETER         ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
     $                    TWO  = 2.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         ACONA
      INTEGER           DA, INFO, LDWORK
      DOUBLE PRECISION  RES
C     .. Array Arguments ..
      DOUBLE PRECISION  A(*), DWORK(*), E(*)
C     .. Local Scalars ..
      LOGICAL           CONV, HURWTZ, LACONA
      INTEGER           I, J, K, LALPHA, LAMBDA, LETA, LQ, LRO, NC, NCK
      DOUBLE PRECISION  A0, RES0, S, SA0, TOLQ, W
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           IDAMAX
      EXTERNAL          IDAMAX, LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DSCAL, DSWAP, SB08NY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, SQRT
C     .. Executable Statements ..
C
      INFO = 0
      LACONA = LSAME( ACONA, 'A' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LACONA .AND. .NOT.LSAME( ACONA, 'B' ) ) THEN
         INFO = -1
      ELSE IF( DA.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDWORK.LT.5*DA + 5 ) THEN
         INFO = -7
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB08ND', -INFO )
         RETURN
      END IF
C
      NC = DA + 1
      IF ( .NOT.LACONA ) THEN
         IF ( A(1).LE.ZERO ) THEN
            INFO = 2
            RETURN
         END IF
         CALL DCOPY( NC, A, 1, E, 1 )
      ELSE
         CALL SB08NY( DA, A, E, W )
      END IF
C
C     Initialization.
C
      LALPHA = 1
      LRO = LALPHA + NC
      LETA = LRO + NC
      LAMBDA = LETA + NC
      LQ = LAMBDA + NC
C
      A0 = E(1)
      SA0 = SQRT( A0 )
      S = ZERO
C
      DO 20 J = 1, NC
         W = E(J)
         A(J) = W
         W = W/SA0
         E(J) = W
         DWORK(LQ-1+J) = W
         S = S + W**2
   20 CONTINUE
C
      RES0 = S - A0
C
C     The contents of the arrays is, cf [1], Section 7.6,
C
C     E : the last computed Hurwitz polynomial q   ;
C                                               i-1
C     DWORK(LALPHA,..,LALPHA+DA-K)  : alpha(k,0),...alpha(k,n-k);
C          (LRO,...,LRO+DA-K)       : alpha(k,n-k),...,alpha(k);
C          (LETA,...,LETA+DA)       : eta(0),...,eta(n);
C          (LAMBDA,...,LAMBDA+DA-1) : lambda(0),...,lambda(n-1)
C
C     DWORK(LQ,...,LQ+DA) : the last computed polynomial q .
C                                                         i
      I = 0
      CONV = .FALSE.
      HURWTZ = .TRUE.
C
C     WHILE ( I < 30 and CONV = FALSE and HURWTZ = TRUE ) DO
   40 IF ( I.LT.30 .AND. .NOT.CONV .AND. HURWTZ ) THEN
         I = I + 1
         CALL DCOPY( NC, A, 1, DWORK(LETA), 1 )
         CALL DSCAL( NC, TWO, DWORK(LETA), 1 )
         CALL DCOPY( NC, DWORK(LQ), 1, DWORK(LALPHA), 1 )
C
C        Computation of lambda(k) and eta(k).
C
         K = 1
C
C        WHILE ( K <= DA and HURWTZ = TRUE ) DO
   60    IF ( ( K.LE.DA ) .AND. HURWTZ ) THEN
            NCK = NC - K
            CALL DCOPY( NCK+1, DWORK(LALPHA), -1, DWORK(LRO), 1 )
            W = DWORK(LALPHA+NCK)/DWORK(LRO+NCK)
            IF ( ABS( W ).GE.ONE ) HURWTZ = .FALSE.
            IF ( HURWTZ ) THEN
               DWORK(LAMBDA+K-1) = W
               CALL DAXPY( NCK, -W, DWORK(LRO), 1, DWORK(LALPHA), 1 )
               W = DWORK(LETA+NCK)/DWORK(LALPHA)
               DWORK(LETA+NCK) = W
               CALL DAXPY( NCK-1, -W, DWORK(LALPHA+1), -1,
     $                     DWORK(LETA+1), 1 )
               K = K + 1
            END IF
            GO TO 60
         END IF
C        END WHILE 60
C
C        HURWTZ = The polynomial q    is a Hurwitz polynomial.
C                                 i-1
         IF ( HURWTZ ) THEN
            CALL DCOPY( NC, DWORK(LQ), 1, E, 1 )
C
C           Accuracy test.
C
            CALL SB08NY( DA, E, DWORK(LQ), TOLQ )
            CALL DAXPY( NC, -ONE, A, 1, DWORK(LQ), 1 )
            RES = ABS( DWORK( IDAMAX( NC, DWORK(LQ), 1 ) + LQ - 1 ) )
            CONV = ( RES.LT.TOLQ ) .OR. ( RES0.LT.ZERO )
C
            IF ( .NOT.CONV ) THEN
               DWORK(LETA) = HALF*DWORK(LETA)/DWORK(LALPHA)
C
C              Computation of x  and q .
C                              i      i
C              DWORK(LETA,...,LETA+DA)   : eta(k,0),...,eta(k,n)
C                   (LRO,...,LRO+DA-K+1) : eta(k,n-k+1),...,eta(k,0)
C
               DO 80 K = DA, 1, -1
                  NCK = NC - K + 1
                  CALL DCOPY( NCK, DWORK(LETA), -1, DWORK(LRO), 1 )
                  W = DWORK(LAMBDA+K-1)
                  CALL DAXPY( NCK, -W, DWORK(LRO), 1, DWORK(LETA), 1 )
   80          CONTINUE
C
               S = ZERO
C
               DO 100 J = 0, DA
                  W = HALF*( DWORK(LETA+J) + E(J+1) )
                  DWORK(LQ+J) = W
                  S = S + W**2
  100          CONTINUE
C
               RES0 = S - A0
C
C              Test on the monotonicity of q .
C                                           0
               CONV = DWORK(LQ).GT.E(1)
               GO TO 40
            END IF
         END IF
      END IF
C     END WHILE 40
C
C     Reverse the order of the coefficients in the array E.
C
      CALL DSWAP( NC, E, 1, DWORK, -1 )
      CALL DSWAP( NC, DWORK, 1, E, 1 )
C
      IF ( .NOT.CONV ) THEN
         IF ( HURWTZ ) THEN
            INFO = 3
         ELSE IF ( I.EQ.1 ) THEN
            INFO = 2
         ELSE
            INFO = 4
         END IF
      END IF
C
      RETURN
C *** Last line of SB08ND ***
      END