1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
|
SUBROUTINE SB10AD( JOB, N, M, NP, NCON, NMEAS, GAMMA, A, LDA,
$ B, LDB, C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK,
$ LDCK, DK, LDDK, AC, LDAC, BC, LDBC, CC, LDCC,
$ DC, LDDC, RCOND, GTOL, ACTOL, IWORK, LIWORK,
$ DWORK, LDWORK, BWORK, LBWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrices of an H-infinity optimal n-state
C controller
C
C | AK | BK |
C K = |----|----|,
C | CK | DK |
C
C using modified Glover's and Doyle's 1988 formulas, for the system
C
C | A | B1 B2 | | A | B |
C P = |----|---------| = |---|---|
C | C1 | D11 D12 | | C | D |
C | C2 | D21 D22 |
C
C and for the estimated minimal possible value of gamma with respect
C to GTOL, where B2 has as column size the number of control inputs
C (NCON) and C2 has as row size the number of measurements (NMEAS)
C being provided to the controller, and then to compute the matrices
C of the closed-loop system
C
C | AC | BC |
C G = |----|----|,
C | CC | DC |
C
C if the stabilizing controller exists.
C
C It is assumed that
C
C (A1) (A,B2) is stabilizable and (C2,A) is detectable,
C
C (A2) D12 is full column rank and D21 is full row rank,
C
C (A3) | A-j*omega*I B2 | has full column rank for all omega,
C | C1 D12 |
C
C (A4) | A-j*omega*I B1 | has full row rank for all omega.
C | C2 D21 |
C
C ARGUMENTS
C
C Input/Output Parameters
C
C JOB (input) INTEGER
C Indicates the strategy for reducing the GAMMA value, as
C follows:
C = 1: Use bisection method for decreasing GAMMA from GAMMA
C to GAMMAMIN until the closed-loop system leaves
C stability.
C = 2: Scan from GAMMA to 0 trying to find the minimal GAMMA
C for which the closed-loop system retains stability.
C = 3: First bisection, then scanning.
C = 4: Find suboptimal controller only.
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C NCON (input) INTEGER
C The number of control inputs (M2). M >= NCON >= 0,
C NP-NMEAS >= NCON.
C
C NMEAS (input) INTEGER
C The number of measurements (NP2). NP >= NMEAS >= 0,
C M-NCON >= NMEAS.
C
C GAMMA (input/output) DOUBLE PRECISION
C The initial value of gamma on input. It is assumed that
C gamma is sufficiently large so that the controller is
C admissible. GAMMA >= 0.
C On output it contains the minimal estimated gamma.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading NP-by-M part of this array must contain the
C system input/output matrix D.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= max(1,NP).
C
C AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
C The leading N-by-N part of this array contains the
C controller state matrix AK.
C
C LDAK INTEGER
C The leading dimension of the array AK. LDAK >= max(1,N).
C
C BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
C The leading N-by-NMEAS part of this array contains the
C controller input matrix BK.
C
C LDBK INTEGER
C The leading dimension of the array BK. LDBK >= max(1,N).
C
C CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
C The leading NCON-by-N part of this array contains the
C controller output matrix CK.
C
C LDCK INTEGER
C The leading dimension of the array CK.
C LDCK >= max(1,NCON).
C
C DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
C The leading NCON-by-NMEAS part of this array contains the
C controller input/output matrix DK.
C
C LDDK INTEGER
C The leading dimension of the array DK.
C LDDK >= max(1,NCON).
C
C AC (output) DOUBLE PRECISION array, dimension (LDAC,2*N)
C The leading 2*N-by-2*N part of this array contains the
C closed-loop system state matrix AC.
C
C LDAC INTEGER
C The leading dimension of the array AC.
C LDAC >= max(1,2*N).
C
C BC (output) DOUBLE PRECISION array, dimension (LDBC,M-NCON)
C The leading 2*N-by-(M-NCON) part of this array contains
C the closed-loop system input matrix BC.
C
C LDBC INTEGER
C The leading dimension of the array BC.
C LDBC >= max(1,2*N).
C
C CC (output) DOUBLE PRECISION array, dimension (LDCC,2*N)
C The leading (NP-NMEAS)-by-2*N part of this array contains
C the closed-loop system output matrix CC.
C
C LDCC INTEGER
C The leading dimension of the array CC.
C LDCC >= max(1,NP-NMEAS).
C
C DC (output) DOUBLE PRECISION array, dimension (LDDC,M-NCON)
C The leading (NP-NMEAS)-by-(M-NCON) part of this array
C contains the closed-loop system input/output matrix DC.
C
C LDDC INTEGER
C The leading dimension of the array DC.
C LDDC >= max(1,NP-NMEAS).
C
C RCOND (output) DOUBLE PRECISION array, dimension (4)
C For the last successful step:
C RCOND(1) contains the reciprocal condition number of the
C control transformation matrix;
C RCOND(2) contains the reciprocal condition number of the
C measurement transformation matrix;
C RCOND(3) contains an estimate of the reciprocal condition
C number of the X-Riccati equation;
C RCOND(4) contains an estimate of the reciprocal condition
C number of the Y-Riccati equation.
C
C Tolerances
C
C GTOL DOUBLE PRECISION
C Tolerance used for controlling the accuracy of GAMMA
C and its distance to the estimated minimal possible
C value of GAMMA.
C If GTOL <= 0, then a default value equal to sqrt(EPS)
C is used, where EPS is the relative machine precision.
C
C ACTOL DOUBLE PRECISION
C Upper bound for the poles of the closed-loop system
C used for determining if it is stable.
C ACTOL <= 0 for stable systems.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C
C LIWORK INTEGER
C The dimension of the array IWORK.
C LIWORK >= max(2*max(N,M-NCON,NP-NMEAS,NCON,NMEAS),N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal
C value of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= LW1 + max(1,LW2,LW3,LW4,LW5 + MAX(LW6,LW7)),
C where
C LW1 = N*M + NP*N + NP*M + M2*M2 + NP2*NP2;
C LW2 = max( ( N + NP1 + 1 )*( N + M2 ) +
C max( 3*( N + M2 ) + N + NP1, 5*( N + M2 ) ),
C ( N + NP2 )*( N + M1 + 1 ) +
C max( 3*( N + NP2 ) + N + M1, 5*( N + NP2 ) ),
C M2 + NP1*NP1 + max( NP1*max( N, M1 ),
C 3*M2 + NP1, 5*M2 ),
C NP2 + M1*M1 + max( max( N, NP1 )*M1,
C 3*NP2 + M1, 5*NP2 ) );
C LW3 = max( ND1*M1 + max( 4*min( ND1, M1 ) + max( ND1,M1 ),
C 6*min( ND1, M1 ) ),
C NP1*ND2 + max( 4*min( NP1, ND2 ) +
C max( NP1,ND2 ),
C 6*min( NP1, ND2 ) ) );
C LW4 = 2*M*M + NP*NP + 2*M*N + M*NP + 2*N*NP;
C LW5 = 2*N*N + M*N + N*NP;
C LW6 = max( M*M + max( 2*M1, 3*N*N +
C max( N*M, 10*N*N + 12*N + 5 ) ),
C NP*NP + max( 2*NP1, 3*N*N +
C max( N*NP, 10*N*N + 12*N + 5 ) ));
C LW7 = M2*NP2 + NP2*NP2 + M2*M2 +
C max( ND1*ND1 + max( 2*ND1, ( ND1 + ND2 )*NP2 ),
C ND2*ND2 + max( 2*ND2, ND2*M2 ), 3*N,
C N*( 2*NP2 + M2 ) +
C max( 2*N*M2, M2*NP2 +
C max( M2*M2 + 3*M2, NP2*( 2*NP2 +
C M2 + max( NP2, N ) ) ) ) );
C M1 = M - M2, NP1 = NP - NP2,
C ND1 = NP1 - M2, ND2 = M1 - NP2.
C For good performance, LDWORK must generally be larger.
C
C BWORK LOGICAL array, dimension (LBWORK)
C
C LBWORK INTEGER
C The dimension of the array BWORK. LBWORK >= 2*N.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the matrix | A-j*omega*I B2 | had not full
C | C1 D12 |
C column rank in respect to the tolerance EPS;
C = 2: if the matrix | A-j*omega*I B1 | had not full row
C | C2 D21 |
C rank in respect to the tolerance EPS;
C = 3: if the matrix D12 had not full column rank in
C respect to the tolerance SQRT(EPS);
C = 4: if the matrix D21 had not full row rank in respect
C to the tolerance SQRT(EPS);
C = 5: if the singular value decomposition (SVD) algorithm
C did not converge (when computing the SVD of one of
C the matrices |A B2 |, |A B1 |, D12 or D21);
C |C1 D12| |C2 D21|
C = 6: if the controller is not admissible (too small value
C of gamma);
C = 7: if the X-Riccati equation was not solved
C successfully (the controller is not admissible or
C there are numerical difficulties);
C = 8: if the Y-Riccati equation was not solved
C successfully (the controller is not admissible or
C there are numerical difficulties);
C = 9: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is
C zero [3];
C = 10: if there are numerical problems when estimating
C singular values of D1111, D1112, D1111', D1121';
C = 11: if the matrices Inp2 - D22*DK or Im2 - DK*D22
C are singular to working precision;
C = 12: if a stabilizing controller cannot be found.
C
C METHOD
C
C The routine implements the Glover's and Doyle's 1988 formulas [1],
C [2], modified to improve the efficiency as described in [3].
C
C JOB = 1: It tries with a decreasing value of GAMMA, starting with
C the given, and with the newly obtained controller estimates of the
C closed-loop system. If it is stable, (i.e., max(eig(AC)) < ACTOL)
C the iterations can be continued until the given tolerance between
C GAMMA and the estimated GAMMAMIN is reached. Otherwise, in the
C next step GAMMA is increased. The step in the all next iterations
C is step = step/2. The closed-loop system is obtained by the
C formulas given in [2].
C
C JOB = 2: The same as for JOB = 1, but with non-varying step till
C GAMMA = 0, step = max(0.1, GTOL).
C
C JOB = 3: Combines the JOB = 1 and JOB = 2 cases for a quicker
C procedure.
C
C JOB = 4: Suboptimal controller for current GAMMA only.
C
C REFERENCES
C
C [1] Glover, K. and Doyle, J.C.
C State-space formulae for all stabilizing controllers that
C satisfy an Hinf norm bound and relations to risk sensitivity.
C Systems and Control Letters, vol. 11, pp. 167-172, 1988.
C
C [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C Smith, R.
C mu-Analysis and Synthesis Toolbox.
C The MathWorks Inc., Natick, MA, 1995.
C
C [3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
C Fortran 77 routines for Hinf and H2 design of continuous-time
C linear control systems.
C Rep. 98-14, Department of Engineering, Leicester University,
C Leicester, U.K., 1998.
C
C NUMERICAL ASPECTS
C
C The accuracy of the result depends on the condition numbers of the
C input and output transformations and on the condition numbers of
C the two Riccati equations, as given by the values of RCOND(1),
C RCOND(2), RCOND(3) and RCOND(4), respectively.
C This approach by estimating the closed-loop system and checking
C its poles seems to be reliable.
C
C CONTRIBUTORS
C
C A. Markovski, P.Hr. Petkov, D.W. Gu and M.M. Konstantinov,
C July 2003.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 2003.
C
C KEYWORDS
C
C Algebraic Riccati equation, H-infinity optimal control, robust
C control.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, P1, THOUS
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ P1 = 0.1D+0, THOUS = 1.0D+3 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, JOB, LBWORK, LDA, LDAC, LDAK, LDB, LDBC,
$ LDBK, LDC, LDCC, LDCK, LDD, LDDC, LDDK, LDWORK,
$ LIWORK, M, N, NCON, NMEAS, NP
DOUBLE PRECISION ACTOL, GAMMA, GTOL
C ..
C .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), AC( LDAC, * ), AK( LDAK, * ),
$ B( LDB, * ), BC( LDBC, * ), BK( LDBK, * ),
$ C( LDC, * ), CC( LDCC, * ), CK( LDCK, * ),
$ D( LDD, * ), DC( LDDC, * ), DK( LDDK, * ),
$ DWORK( * ), RCOND( 4 )
C ..
C .. Local Scalars ..
INTEGER I, INF, INFO2, INFO3, IWAC, IWC, IWD, IWD1,
$ IWF, IWH, IWRE, IWRK, IWS1, IWS2, IWTU, IWTY,
$ IWWI, IWWR, IWX, IWY, LW1, LW2, LW3, LW4, LW5,
$ LW6, LW7, LWAMAX, M1, M11, M2, MINWRK, MODE,
$ NP1, NP11, NP2
DOUBLE PRECISION GAMABS, GAMAMN, GAMAMX, GTOLL, MINEAC, STEPG,
$ TOL2
C ..
C .. External Functions ..
LOGICAL SELECT
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, SELECT
C ..
C .. External Subroutines ..
EXTERNAL DGEES, DGESVD, DLACPY, SB10LD, SB10PD, SB10QD,
$ SB10RD, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN, SQRT
C ..
C .. Executable Statements ..
C
C Decode and test input parameters.
C
M1 = M - NCON
M2 = NCON
NP1 = NP - NMEAS
NP2 = NMEAS
NP11 = NP1 - M2
M11 = M1 - NP2
C
INFO = 0
IF ( JOB.LT.1 .OR. JOB.GT.4 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( NP.LT.0 ) THEN
INFO = -4
ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
INFO = -5
ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
INFO = -6
ELSE IF( GAMMA.LT.ZERO ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -13
ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
INFO = -15
ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
INFO = -17
ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
INFO = -19
ELSE IF( LDCK.LT.MAX( 1, M2 ) ) THEN
INFO = -21
ELSE IF( LDDK.LT.MAX( 1, M2 ) ) THEN
INFO = -23
ELSE IF( LDAC.LT.MAX( 1, 2*N ) ) THEN
INFO = -25
ELSE IF( LDBC.LT.MAX( 1, 2*N ) ) THEN
INFO = -27
ELSE IF( LDCC.LT.MAX( 1, NP1 ) ) THEN
INFO = -29
ELSE IF( LDDC.LT.MAX( 1, NP1 ) ) THEN
INFO = -31
ELSE
C
C Compute workspace.
C
LW1 = N*M + NP*N + NP*M + M2*M2 + NP2*NP2
LW2 = MAX( ( N + NP1 + 1 )*( N + M2 ) +
$ MAX( 3*( N + M2 ) + N + NP1, 5*( N + M2 ) ),
$ ( N + NP2 )*( N + M1 + 1 ) +
$ MAX( 3*( N + NP2 ) + N + M1, 5*( N + NP2 ) ),
$ M2 + NP1*NP1 + MAX( NP1*MAX( N, M1 ), 3*M2 + NP1,
$ 5*M2 ),
$ NP2 + M1*M1 + MAX( MAX( N, NP1 )*M1, 3*NP2 + M1,
$ 5*NP2 ) )
LW3 = MAX( NP11*M1 + MAX( 4*MIN( NP11, M1 ) + MAX( NP11, M1 ),
$ 6*MIN( NP11, M1 ) ),
$ NP1*M11 + MAX( 4*MIN( NP1, M11 ) + MAX( NP1, M11 ),
$ 6*MIN( NP1, M11 ) ) )
LW4 = 2*M*M + NP*NP + 2*M*N + M*NP + 2*N*NP
LW5 = 2*N*N + M*N + N*NP
LW6 = MAX( M*M + MAX( 2*M1, 3*N*N +
$ MAX( N*M, 10*N*N + 12*N + 5 ) ),
$ NP*NP + MAX( 2*NP1, 3*N*N +
$ MAX( N*NP, 10*N*N + 12*N + 5 ) ) )
LW7 = M2*NP2 + NP2*NP2 + M2*M2 +
$ MAX( NP11*NP11 + MAX( 2*NP11, ( NP11 + M11 )*NP2 ),
$ M11*M11 + MAX( 2*M11, M11*M2 ), 3*N,
$ N*( 2*NP2 + M2 ) +
$ MAX( 2*N*M2, M2*NP2 +
$ MAX( M2*M2 + 3*M2, NP2*( 2*NP2 +
$ M2 + MAX( NP2, N ) ) ) ) )
MINWRK = LW1 + MAX( 1, LW2, LW3, LW4, LW5 + MAX( LW6, LW7 ) )
IF( LDWORK.LT.MINWRK ) THEN
INFO = -38
ELSE IF( LIWORK.LT.MAX( 2*MAX( N, M1, NP1, M2, NP2 ),
$ N*N ) ) THEN
INFO = -36
ELSE IF( LBWORK.LT.2*N ) THEN
INFO = -40
END IF
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB10AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
$ .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
RCOND( 1 ) = ONE
RCOND( 2 ) = ONE
RCOND( 3 ) = ONE
RCOND( 4 ) = ONE
DWORK( 1 ) = ONE
RETURN
END IF
C
MODE = JOB
IF ( MODE.GT.2 )
$ MODE = 1
GTOLL = GTOL
IF( GTOLL.LE.ZERO ) THEN
C
C Set the default value of the tolerance for GAMMA.
C
GTOLL = SQRT( DLAMCH( 'Epsilon' ) )
END IF
C
C Workspace usage 1.
C
IWC = 1 + N*M
IWD = IWC + NP*N
IWTU = IWD + NP*M
IWTY = IWTU + M2*M2
IWRK = IWTY + NP2*NP2
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK, N )
C
CALL DLACPY( 'Full', NP, N, C, LDC, DWORK( IWC ), NP )
C
CALL DLACPY( 'Full', NP, M, D, LDD, DWORK( IWD ), NP )
C
C Transform the system so that D12 and D21 satisfy the formulas
C in the computation of the Hinf optimal controller.
C Workspace: need LW1 + MAX(1,LWP1,LWP2,LWP3,LWP4),
C prefer larger,
C where
C LW1 = N*M + NP*N + NP*M + M2*M2 + NP2*NP2
C LWP1 = (N+NP1+1)*(N+M2) + MAX(3*(N+M2)+N+NP1,5*(N+M2)),
C LWP2 = (N+NP2)*(N+M1+1) + MAX(3*(N+NP2)+N+M1,5*(N+NP2)),
C LWP3 = M2 + NP1*NP1 + MAX(NP1*MAX(N,M1),3*M2+NP1,5*M2),
C LWP4 = NP2 + M1*M1 + MAX(MAX(N,NP1)*M1,3*NP2+M1,5*NP2),
C with M1 = M - M2 and NP1 = NP - NP2.
C Denoting Q = MAX(M1,M2,NP1,NP2), an upper bound is
C LW1 + MAX(1,(N+Q)*(N+Q+6),Q*(Q+MAX(N,Q,5)+1).
C
TOL2 = -ONE
C
CALL SB10PD( N, M, NP, NCON, NMEAS, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWTU ),
$ M2, DWORK( IWTY ), NP2, RCOND, TOL2, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
C
LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
C
IF ( INFO2.NE.0 ) THEN
INFO = INFO2
RETURN
END IF
C
C Workspace usage 2.
C
IWD1 = IWRK
IWS1 = IWD1 + NP11*M1
C
C Check if GAMMA < max(sigma[D1111,D1112],sigma[D1111',D1121']).
C Workspace: need LW1 + MAX(1, LWS1, LWS2),
C prefer larger,
C where
C LWS1 = NP11*M1 + MAX(4*MIN(NP11,M1)+MAX(NP11,M1),6*MIN(NP11,M1))
C LWS2 = NP1*M11 + MAX(4*MIN(NP1,M11)+MAX(NP1,M11),6*MIN(NP1,M11))
C
INFO2 = 0
INFO3 = 0
C
IF ( NP11.NE.0 .AND. M1.NE.0 ) THEN
IWRK = IWS1 + MIN( NP11, M1 )
CALL DLACPY( 'Full', NP11, M1, DWORK(IWD), LDD, DWORK(IWD1),
$ NP11 )
CALL DGESVD( 'N', 'N', NP11, M1, DWORK(IWD1), NP11,
$ DWORK(IWS1), DWORK(IWS1), 1, DWORK(IWS1), 1,
$ DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
ELSE
DWORK(IWS1) = ZERO
END IF
C
IWS2 = IWD1 + NP1*M11
IF ( NP1.NE.0 .AND. M11.NE.0 ) THEN
IWRK = IWS2 + MIN( NP1, M11 )
CALL DLACPY( 'Full', NP1, M11, DWORK(IWD), LDD, DWORK(IWD1),
$ NP1 )
CALL DGESVD( 'N', 'N', NP1, M11, DWORK(IWD1), NP1, DWORK(IWS2),
$ DWORK(IWS2), 1, DWORK(IWS2), 1, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO3 )
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
ELSE
DWORK(IWS2) = ZERO
END IF
C
GAMAMN = MAX( DWORK(IWS1), DWORK(IWS2) )
C
IF ( INFO2.GT.0 .OR. INFO3.GT.0 ) THEN
INFO = 10
RETURN
ELSE IF ( GAMMA.LE.GAMAMN ) THEN
INFO = 6
RETURN
END IF
C
C Workspace usage 3.
C
IWX = IWD1
IWY = IWX + N*N
IWF = IWY + N*N
IWH = IWF + M*N
IWRK = IWH + N*NP
IWAC = IWD1
IWWR = IWAC + 4*N*N
IWWI = IWWR + 2*N
IWRE = IWWI + 2*N
C
C Prepare some auxiliary variables for the gamma iteration.
C
STEPG = GAMMA - GAMAMN
GAMABS = GAMMA
GAMAMX = GAMMA
INF = 0
C
C ###############################################################
C
C Begin the gamma iteration.
C
10 CONTINUE
STEPG = STEPG/TWO
C
C Try to compute the state feedback and output injection
C matrices for the current GAMMA.
C
CALL SB10QD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ),
$ M, DWORK( IWH ), N, DWORK( IWX ), N, DWORK( IWY ),
$ N, RCOND(3), IWORK, DWORK( IWRK ), LDWORK-IWRK+1,
$ BWORK, INFO2 )
C
IF ( INFO2.NE.0 ) GOTO 30
C
C Try to compute the Hinf suboptimal (yet) controller.
C
CALL SB10RD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ),
$ M, DWORK( IWH ), N, DWORK( IWTU ), M2,
$ DWORK( IWTY ), NP2, DWORK( IWX ), N, DWORK( IWY ),
$ N, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, IWORK,
$ DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
C
IF ( INFO2.NE.0 ) GOTO 30
C
C Compute the closed-loop system.
C Workspace: need LW1 + 2*M*M + NP*NP + 2*M*N + M*NP + 2*N*NP;
C prefer larger.
C
CALL SB10LD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC, D,
$ LDD, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, AC,
$ LDAC, BC, LDBC, CC, LDCC, DC, LDDC, IWORK,
$ DWORK( IWD1 ), LDWORK-IWD1+1, INFO2 )
C
IF ( INFO2.NE.0 ) GOTO 30
C
LWAMAX = MAX( LWAMAX, INT( DWORK( IWD1 ) ) + IWD1 - 1 )
C
C Compute the poles of the closed-loop system.
C Workspace: need LW1 + 4*N*N + 4*N + max(1,6*N);
C prefer larger.
C
CALL DLACPY( 'Full', 2*N, 2*N, AC, LDAC, DWORK(IWAC), 2*N )
C
CALL DGEES( 'N', 'N', SELECT, 2*N, DWORK(IWAC), 2*N, IWORK,
$ DWORK(IWWR), DWORK(IWWI), DWORK(IWRE), 1,
$ DWORK(IWRE), LDWORK-IWRE+1, BWORK, INFO2 )
C
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRE ) ) + IWRE - 1 )
C
C Now DWORK(IWWR+I)=Re(Lambda), DWORK(IWWI+I)=Im(Lambda),
C for I=0,2*N-1.
C
MINEAC = -THOUS
C
DO 20 I = 0, 2*N - 1
MINEAC = MAX( MINEAC, DWORK(IWWR+I) )
20 CONTINUE
C
C Check if the closed-loop system is stable.
C
30 IF ( MODE.EQ.1 ) THEN
IF ( INFO2.EQ.0 .AND. MINEAC.LT.ACTOL ) THEN
GAMABS = GAMMA
GAMMA = GAMMA - STEPG
INF = 1
ELSE
GAMMA = MIN( GAMMA + STEPG, GAMAMX )
END IF
ELSE IF ( MODE.EQ.2 ) THEN
IF ( INFO2.EQ.0 .AND. MINEAC.LT.ACTOL ) THEN
GAMABS = GAMMA
INF = 1
END IF
GAMMA = GAMMA - MAX( P1, GTOLL )
END IF
C
C More iterations?
C
IF ( MODE.EQ.1 .AND. JOB.EQ.3 .AND. TWO*STEPG.LT.GTOLL ) THEN
MODE = 2
GAMMA = GAMABS
END IF
C
IF ( JOB.NE.4 .AND.
$ ( MODE.EQ.1 .AND. TWO*STEPG.GE.GTOLL .OR.
$ MODE.EQ.2 .AND. GAMMA.GT.ZERO ) ) THEN
GOTO 10
END IF
C
C ###############################################################
C
C End of the gamma iteration - Return if no stabilizing controller
C was found.
C
IF ( INF.EQ.0 ) THEN
INFO = 12
RETURN
END IF
C
C Now compute the state feedback and output injection matrices
C using GAMABS.
C
GAMMA = GAMABS
C
C Integer workspace: need max(2*max(N,M-NCON,NP-NMEAS),N*N).
C Workspace: need LW1P +
C max(1,M*M + max(2*M1,3*N*N +
C max(N*M,10*N*N+12*N+5)),
C NP*NP + max(2*NP1,3*N*N +
C max(N*NP,10*N*N+12*N+5)));
C prefer larger,
C where LW1P = LW1 + 2*N*N + M*N + N*NP.
C An upper bound of the second term after LW1P is
C max(1,4*Q*Q+max(2*Q,3*N*N + max(2*N*Q,10*N*N+12*N+5))).
C
CALL SB10QD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ),
$ M, DWORK( IWH ), N, DWORK( IWX ), N, DWORK( IWY ),
$ N, RCOND(3), IWORK, DWORK( IWRK ), LDWORK-IWRK+1,
$ BWORK, INFO2 )
C
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
C
IF ( INFO2.GT.0 ) THEN
INFO = INFO2 + 5
RETURN
END IF
C
C Compute the Hinf optimal controller.
C Integer workspace: need max(2*(max(NP,M)-M2-NP2,M2,N),NP2).
C Workspace: need LW1P +
C max(1, M2*NP2 + NP2*NP2 + M2*M2 +
C max(D1*D1 + max(2*D1, (D1+D2)*NP2),
C D2*D2 + max(2*D2, D2*M2), 3*N,
C N*(2*NP2 + M2) +
C max(2*N*M2, M2*NP2 +
C max(M2*M2+3*M2, NP2*(2*NP2+
C M2+max(NP2,N))))))
C where D1 = NP1 - M2 = NP11, D2 = M1 - NP2 = M11;
C prefer larger.
C An upper bound of the second term after LW1P is
C max( 1, Q*(3*Q + 3*N + max(2*N, 4*Q + max(Q, N)))).
C
CALL SB10RD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ),
$ M, DWORK( IWH ), N, DWORK( IWTU ), M2, DWORK( IWTY ),
$ NP2, DWORK( IWX ), N, DWORK( IWY ), N, AK, LDAK, BK,
$ LDBK, CK, LDCK, DK, LDDK, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
C
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
C
IF( INFO2.EQ.1 ) THEN
INFO = 6
RETURN
ELSE IF( INFO2.EQ.2 ) THEN
INFO = 9
RETURN
END IF
C
C Integer workspace: need 2*max(NCON,NMEAS).
C Workspace: need 2*M*M + NP*NP + 2*M*N + M*NP + 2*N*NP;
C prefer larger.
C
CALL SB10LD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC, D,
$ LDD, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, AC,
$ LDAC, BC, LDBC, CC, LDCC, DC, LDDC, IWORK, DWORK,
$ LDWORK, INFO2 )
C
IF( INFO2.GT.0 ) THEN
INFO = 11
RETURN
END IF
C
DWORK( 1 ) = DBLE( LWAMAX )
RETURN
C *** Last line of SB10AD ***
END
|