1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
SUBROUTINE SB10FD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK,
$ DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK,
$ BWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrices of an H-infinity (sub)optimal n-state
C controller
C
C | AK | BK |
C K = |----|----|,
C | CK | DK |
C
C using modified Glover's and Doyle's 1988 formulas, for the system
C
C | A | B1 B2 | | A | B |
C P = |----|---------| = |---|---|
C | C1 | D11 D12 | | C | D |
C | C2 | D21 D22 |
C
C and for a given value of gamma, where B2 has as column size the
C number of control inputs (NCON) and C2 has as row size the number
C of measurements (NMEAS) being provided to the controller.
C
C It is assumed that
C
C (A1) (A,B2) is stabilizable and (C2,A) is detectable,
C
C (A2) D12 is full column rank and D21 is full row rank,
C
C (A3) | A-j*omega*I B2 | has full column rank for all omega,
C | C1 D12 |
C
C (A4) | A-j*omega*I B1 | has full row rank for all omega.
C | C2 D21 |
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C NCON (input) INTEGER
C The number of control inputs (M2). M >= NCON >= 0,
C NP-NMEAS >= NCON.
C
C NMEAS (input) INTEGER
C The number of measurements (NP2). NP >= NMEAS >= 0,
C M-NCON >= NMEAS.
C
C GAMMA (input) DOUBLE PRECISION
C The value of gamma. It is assumed that gamma is
C sufficiently large so that the controller is admissible.
C GAMMA >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading NP-by-M part of this array must contain the
C system input/output matrix D.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= max(1,NP).
C
C AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
C The leading N-by-N part of this array contains the
C controller state matrix AK.
C
C LDAK INTEGER
C The leading dimension of the array AK. LDAK >= max(1,N).
C
C BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
C The leading N-by-NMEAS part of this array contains the
C controller input matrix BK.
C
C LDBK INTEGER
C The leading dimension of the array BK. LDBK >= max(1,N).
C
C CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
C The leading NCON-by-N part of this array contains the
C controller output matrix CK.
C
C LDCK INTEGER
C The leading dimension of the array CK.
C LDCK >= max(1,NCON).
C
C DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
C The leading NCON-by-NMEAS part of this array contains the
C controller input/output matrix DK.
C
C LDDK INTEGER
C The leading dimension of the array DK.
C LDDK >= max(1,NCON).
C
C RCOND (output) DOUBLE PRECISION array, dimension (4)
C RCOND(1) contains the reciprocal condition number of the
C control transformation matrix;
C RCOND(2) contains the reciprocal condition number of the
C measurement transformation matrix;
C RCOND(3) contains an estimate of the reciprocal condition
C number of the X-Riccati equation;
C RCOND(4) contains an estimate of the reciprocal condition
C number of the Y-Riccati equation.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C Tolerance used for controlling the accuracy of the applied
C transformations for computing the normalized form in
C SLICOT Library routine SB10PD. Transformation matrices
C whose reciprocal condition numbers are less than TOL are
C not allowed. If TOL <= 0, then a default value equal to
C sqrt(EPS) is used, where EPS is the relative machine
C precision.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK), where
C LIWORK = max(2*max(N,M-NCON,NP-NMEAS,NCON),N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal
C LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 +
C max(1,LW1,LW2,LW3,LW4,LW5,LW6), where
C LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2)),
C LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2)),
C LW3 = M2 + NP1*NP1 + max(NP1*max(N,M1),3*M2+NP1,5*M2),
C LW4 = NP2 + M1*M1 + max(max(N,NP1)*M1,3*NP2+M1,5*NP2),
C LW5 = 2*N*N + N*(M+NP) +
C max(1,M*M + max(2*M1,3*N*N+max(N*M,10*N*N+12*N+5)),
C NP*NP + max(2*NP1,3*N*N +
C max(N*NP,10*N*N+12*N+5))),
C LW6 = 2*N*N + N*(M+NP) +
C max(1, M2*NP2 + NP2*NP2 + M2*M2 +
C max(D1*D1 + max(2*D1, (D1+D2)*NP2),
C D2*D2 + max(2*D2, D2*M2), 3*N,
C N*(2*NP2 + M2) +
C max(2*N*M2, M2*NP2 +
C max(M2*M2+3*M2, NP2*(2*NP2+
C M2+max(NP2,N)))))),
C with D1 = NP1 - M2, D2 = M1 - NP2,
C NP1 = NP - NP2, M1 = M - M2.
C For good performance, LDWORK must generally be larger.
C Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
C 2*Q*(3*Q+2*N)+max(1,(N+Q)*(N+Q+6),Q*(Q+max(N,Q,5)+1),
C 2*N*(N+2*Q)+max(1,4*Q*Q+
C max(2*Q,3*N*N+max(2*N*Q,10*N*N+12*N+5)),
C Q*(3*N+3*Q+max(2*N,4*Q+max(N,Q))))).
C
C BWORK LOGICAL array, dimension (2*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the matrix | A-j*omega*I B2 | had not full
C | C1 D12 |
C column rank in respect to the tolerance EPS;
C = 2: if the matrix | A-j*omega*I B1 | had not full row
C | C2 D21 |
C rank in respect to the tolerance EPS;
C = 3: if the matrix D12 had not full column rank in
C respect to the tolerance TOL;
C = 4: if the matrix D21 had not full row rank in respect
C to the tolerance TOL;
C = 5: if the singular value decomposition (SVD) algorithm
C did not converge (when computing the SVD of one of
C the matrices |A B2 |, |A B1 |, D12 or D21).
C |C1 D12| |C2 D21|
C = 6: if the controller is not admissible (too small value
C of gamma);
C = 7: if the X-Riccati equation was not solved
C successfully (the controller is not admissible or
C there are numerical difficulties);
C = 8: if the Y-Riccati equation was not solved
C successfully (the controller is not admissible or
C there are numerical difficulties);
C = 9: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is
C zero [3].
C
C METHOD
C
C The routine implements the Glover's and Doyle's 1988 formulas [1],
C [2] modified to improve the efficiency as described in [3].
C
C REFERENCES
C
C [1] Glover, K. and Doyle, J.C.
C State-space formulae for all stabilizing controllers that
C satisfy an Hinf norm bound and relations to risk sensitivity.
C Systems and Control Letters, vol. 11, pp. 167-172, 1988.
C
C [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C Smith, R.
C mu-Analysis and Synthesis Toolbox.
C The MathWorks Inc., Natick, Mass., 1995.
C
C [3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
C Fortran 77 routines for Hinf and H2 design of continuous-time
C linear control systems.
C Rep. 98-14, Department of Engineering, Leicester University,
C Leicester, U.K., 1998.
C
C NUMERICAL ASPECTS
C
C The accuracy of the result depends on the condition numbers of the
C input and output transformations and on the condition numbers of
C the two Riccati equations, as given by the values of RCOND(1),
C RCOND(2), RCOND(3) and RCOND(4), respectively.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C Sept. 1999, Feb. 2000.
C
C KEYWORDS
C
C Algebraic Riccati equation, H-infinity optimal control, robust
C control.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDWORK, M, N, NCON, NMEAS, NP
DOUBLE PRECISION GAMMA, TOL
C ..
C .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ RCOND( 4 )
C ..
C .. Local Scalars ..
INTEGER INFO2, IWC, IWD, IWF, IWH, IWRK, IWTU, IWTY,
$ IWX, IWY, LW1, LW2, LW3, LW4, LW5, LW6,
$ LWAMAX, M1, M2, MINWRK, ND1, ND2, NP1, NP2
DOUBLE PRECISION TOLL
C ..
C .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
C ..
C .. External Subroutines ..
EXTERNAL DLACPY, SB10PD, SB10QD, SB10RD, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, SQRT
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
M1 = M - NCON
M2 = NCON
NP1 = NP - NMEAS
NP2 = NMEAS
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( NP.LT.0 ) THEN
INFO = -3
ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
INFO = -4
ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
INFO = -5
ELSE IF( GAMMA.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -12
ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
INFO = -14
ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDCK.LT.MAX( 1, M2 ) ) THEN
INFO = -20
ELSE IF( LDDK.LT.MAX( 1, M2 ) ) THEN
INFO = -22
ELSE
C
C Compute workspace.
C
ND1 = NP1 - M2
ND2 = M1 - NP2
LW1 = ( N + NP1 + 1 )*( N + M2 ) + MAX( 3*( N + M2 ) + N + NP1,
$ 5*( N + M2 ) )
LW2 = ( N + NP2 )*( N + M1 + 1 ) + MAX( 3*( N + NP2 ) + N +
$ M1, 5*( N + NP2 ) )
LW3 = M2 + NP1*NP1 + MAX( NP1*MAX( N, M1 ), 3*M2 + NP1, 5*M2 )
LW4 = NP2 + M1*M1 + MAX( MAX( N, NP1 )*M1, 3*NP2 + M1, 5*NP2 )
LW5 = 2*N*N + N*( M + NP ) +
$ MAX( 1, M*M + MAX( 2*M1, 3*N*N +
$ MAX( N*M, 10*N*N + 12*N + 5 ) ),
$ NP*NP + MAX( 2*NP1, 3*N*N +
$ MAX( N*NP, 10*N*N + 12*N + 5 ) ) )
LW6 = 2*N*N + N*( M + NP ) +
$ MAX( 1, M2*NP2 + NP2*NP2 + M2*M2 +
$ MAX( ND1*ND1 + MAX( 2*ND1, ( ND1 + ND2 )*NP2 ),
$ ND2*ND2 + MAX( 2*ND2, ND2*M2 ), 3*N,
$ N*( 2*NP2 + M2 ) +
$ MAX( 2*N*M2, M2*NP2 +
$ MAX( M2*M2 + 3*M2, NP2*( 2*NP2 +
$ M2 + MAX( NP2, N ) ) ) ) ) )
MINWRK = N*M + NP*( N + M ) + M2*M2 + NP2*NP2 +
$ MAX( 1, LW1, LW2, LW3, LW4, LW5, LW6 )
IF( LDWORK.LT.MINWRK )
$ INFO = -27
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB10FD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
$ .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
RCOND( 1 ) = ONE
RCOND( 2 ) = ONE
RCOND( 3 ) = ONE
RCOND( 4 ) = ONE
DWORK( 1 ) = ONE
RETURN
END IF
C
TOLL = TOL
IF( TOLL.LE.ZERO ) THEN
C
C Set the default value of the tolerance.
C
TOLL = SQRT( DLAMCH( 'Epsilon' ) )
END IF
C
C Workspace usage.
C
IWC = 1 + N*M
IWD = IWC + NP*N
IWTU = IWD + NP*M
IWTY = IWTU + M2*M2
IWRK = IWTY + NP2*NP2
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK, N )
CALL DLACPY( 'Full', NP, N, C, LDC, DWORK( IWC ), NP )
CALL DLACPY( 'Full', NP, M, D, LDD, DWORK( IWD ), NP )
C
C Transform the system so that D12 and D21 satisfy the formulas
C in the computation of the Hinf (sub)optimal controller.
C
CALL SB10PD( N, M, NP, NCON, NMEAS, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWTU ),
$ M2, DWORK( IWTY ), NP2, RCOND, TOLL, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = INFO2
RETURN
END IF
LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
C
IWX = IWRK
IWY = IWX + N*N
IWF = IWY + N*N
IWH = IWF + M*N
IWRK = IWH + N*NP
C
C Compute the (sub)optimal state feedback and output injection
C matrices.
C
CALL SB10QD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ),
$ M, DWORK( IWH ), N, DWORK( IWX ), N, DWORK( IWY ),
$ N, RCOND(3), IWORK, DWORK( IWRK ), LDWORK-IWRK+1,
$ BWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = INFO2 + 5
RETURN
END IF
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C Compute the Hinf (sub)optimal controller.
C
CALL SB10RD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ),
$ M, DWORK( IWH ), N, DWORK( IWTU ), M2, DWORK( IWTY ),
$ NP2, DWORK( IWX ), N, DWORK( IWY ), N, AK, LDAK, BK,
$ LDBK, CK, LDCK, DK, LDDK, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
IF( INFO2.EQ.1 ) THEN
INFO = 6
RETURN
ELSE IF( INFO2.EQ.2 ) THEN
INFO = 9
RETURN
END IF
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
DWORK( 1 ) = DBLE( LWAMAX )
RETURN
C *** Last line of SB10FD ***
END
|