1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
SUBROUTINE SB10KD( N, M, NP, A, LDA, B, LDB, C, LDC, FACTOR,
$ AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, RCOND,
$ IWORK, DWORK, LDWORK, BWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrices of the positive feedback controller
C
C | Ak | Bk |
C K = |----|----|
C | Ck | Dk |
C
C for the shaped plant
C
C | A | B |
C G = |---|---|
C | C | 0 |
C
C in the Discrete-Time Loop Shaping Design Procedure.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the plant. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A of the shaped plant.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B of the shaped plant.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C of the shaped plant.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C FACTOR (input) DOUBLE PRECISION
C = 1 implies that an optimal controller is required;
C > 1 implies that a suboptimal controller is required
C achieving a performance FACTOR less than optimal.
C FACTOR >= 1.
C
C AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
C The leading N-by-N part of this array contains the
C controller state matrix Ak.
C
C LDAK INTEGER
C The leading dimension of the array AK. LDAK >= max(1,N).
C
C BK (output) DOUBLE PRECISION array, dimension (LDBK,NP)
C The leading N-by-NP part of this array contains the
C controller input matrix Bk.
C
C LDBK INTEGER
C The leading dimension of the array BK. LDBK >= max(1,N).
C
C CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
C The leading M-by-N part of this array contains the
C controller output matrix Ck.
C
C LDCK INTEGER
C The leading dimension of the array CK. LDCK >= max(1,M).
C
C DK (output) DOUBLE PRECISION array, dimension (LDDK,NP)
C The leading M-by-NP part of this array contains the
C controller matrix Dk.
C
C LDDK INTEGER
C The leading dimension of the array DK. LDDK >= max(1,M).
C
C RCOND (output) DOUBLE PRECISION array, dimension (4)
C RCOND(1) contains an estimate of the reciprocal condition
C number of the linear system of equations from
C which the solution of the P-Riccati equation is
C obtained;
C RCOND(2) contains an estimate of the reciprocal condition
C number of the linear system of equations from
C which the solution of the Q-Riccati equation is
C obtained;
C RCOND(3) contains an estimate of the reciprocal condition
C number of the linear system of equations from
C which the solution of the X-Riccati equation is
C obtained;
C RCOND(4) contains an estimate of the reciprocal condition
C number of the matrix Rx + Bx'*X*Bx (see the
C comments in the code).
C
C Workspace
C
C IWORK INTEGER array, dimension 2*max(N,NP+M)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= 15*N*N + 6*N +
C max( 14*N+23, 16*N, 2*N+NP+M, 3*(NP+M) ) +
C max( N*N, 11*N*NP + 2*M*M + 8*NP*NP + 8*M*N +
C 4*M*NP + NP ).
C For good performance, LDWORK must generally be larger.
C
C BWORK LOGICAL array, dimension (2*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the P-Riccati equation is not solved successfully;
C = 2: the Q-Riccati equation is not solved successfully;
C = 3: the X-Riccati equation is not solved successfully;
C = 4: the iteration to compute eigenvalues failed to
C converge;
C = 5: the matrix Rx + Bx'*X*Bx is singular;
C = 6: the closed-loop system is unstable.
C
C METHOD
C
C The routine implements the method presented in [1].
C
C REFERENCES
C
C [1] McFarlane, D. and Glover, K.
C A loop shaping design procedure using H_infinity synthesis.
C IEEE Trans. Automat. Control, vol. AC-37, no. 6, pp. 759-769,
C 1992.
C
C NUMERICAL ASPECTS
C
C The accuracy of the results depends on the conditioning of the
C two Riccati equations solved in the controller design. For
C better conditioning it is advised to take FACTOR > 1.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 2000.
C
C REVISIONS
C
C V. Sima, Katholieke University Leuven, January 2001,
C February 2001.
C
C KEYWORDS
C
C H_infinity control, Loop-shaping design, Robust control.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDDK,
$ LDWORK, M, N, NP
DOUBLE PRECISION FACTOR
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
LOGICAL BWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ DK( LDDK, * ), DWORK( * ), RCOND( 4 )
C ..
C .. Local Scalars ..
INTEGER I, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10,
$ I11, I12, I13, I14, I15, I16, I17, I18, I19,
$ I20, I21, I22, I23, I24, I25, I26, INFO2,
$ IWRK, J, LWA, LWAMAX, MINWRK, N2, NS, SDIM
DOUBLE PRECISION GAMMA, RNORM
C ..
C .. External Functions ..
LOGICAL SELECT
DOUBLE PRECISION DLANSY, DLAPY2
EXTERNAL DLANSY, DLAPY2, SELECT
C ..
C .. External Subroutines ..
EXTERNAL DGEMM, DGEES, DLACPY, DLASET, DPOTRF, DPOTRS,
$ DSYCON, DSYEV, DSYRK, DSYTRF, DSYTRS, SB02OD,
$ XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, SQRT
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( NP.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -9
ELSE IF( FACTOR.LT.ONE ) THEN
INFO = -10
ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDCK.LT.MAX( 1, M ) ) THEN
INFO = -16
ELSE IF( LDDK.LT.MAX( 1, M ) ) THEN
INFO = -18
END IF
C
C Compute workspace.
C
MINWRK = 15*N*N + 6*N + MAX( 14*N+23, 16*N, 2*N+NP+M, 3*(NP+M) ) +
$ MAX( N*N, 11*N*NP + 2*M*M + 8*NP*NP + 8*M*N +
$ 4*M*NP + NP )
IF( LDWORK.LT.MINWRK ) THEN
INFO = -22
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB10KD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 ) THEN
RCOND( 1 ) = ONE
RCOND( 2 ) = ONE
RCOND( 3 ) = ONE
RCOND( 4 ) = ONE
DWORK( 1 ) = ONE
RETURN
END IF
C
C Workspace usage.
C
N2 = 2*N
I1 = N*N
I2 = I1 + N*N
I3 = I2 + N*N
I4 = I3 + N*N
I5 = I4 + N2
I6 = I5 + N2
I7 = I6 + N2
I8 = I7 + N2*N2
I9 = I8 + N2*N2
C
IWRK = I9 + N2*N2
LWAMAX = 0
C
C Compute Cr = C'*C .
C
CALL DSYRK( 'U', 'T', N, NP, ONE, C, LDC, ZERO, DWORK( I2+1 ), N )
C
C Compute Dr = B*B' .
C
CALL DSYRK( 'U', 'N', N, M, ONE, B, LDB, ZERO, DWORK( I3+1 ), N )
C -1
C Solution of the Riccati equation A'*P*(In + Dr*P) *A - P + Cr = 0.
C
CALL SB02OD( 'D', 'G', 'N', 'U', 'Z', 'S', N, M, NP, A, LDA,
$ DWORK( I3+1 ), N, DWORK( I2+1 ), N, DWORK, M, DWORK,
$ N, RCOND( 1 ), DWORK, N, DWORK( I4+1 ),
$ DWORK( I5+1 ), DWORK( I6+1 ), DWORK( I7+1 ), N2,
$ DWORK( I8+1 ), N2, DWORK( I9+1 ), N2, -ONE, IWORK,
$ DWORK( IWRK+1 ), LDWORK-IWRK, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 1
RETURN
END IF
LWA = INT( DWORK( IWRK+1 ) ) + IWRK
LWAMAX = MAX( LWA, LWAMAX )
C
C Transpose A in AK (used as workspace).
C
DO 40 J = 1, N
DO 30 I = 1, N
AK( I,J ) = A( J,I )
30 CONTINUE
40 CONTINUE
C -1
C Solution of the Riccati equation A*Q*(In + Cr*Q) *A' - Q + Dr = 0.
C
CALL SB02OD( 'D', 'G', 'N', 'U', 'Z', 'S', N, M, NP, AK, LDAK,
$ DWORK( I2+1 ), N, DWORK( I3+1 ), N, DWORK, M, DWORK,
$ N, RCOND( 2 ), DWORK( I1+1 ), N, DWORK( I4+1 ),
$ DWORK( I5+1 ), DWORK( I6+1 ), DWORK( I7+1 ), N2,
$ DWORK( I8+1 ), N2, DWORK( I9+1 ), N2, -ONE, IWORK,
$ DWORK( IWRK+1 ), LDWORK-IWRK, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 2
RETURN
END IF
LWA = INT( DWORK( IWRK+1 ) ) + IWRK
LWAMAX = MAX( LWA, LWAMAX )
C
C Compute gamma.
C
CALL DGEMM( 'N', 'N', N, N, N, ONE, DWORK( I1+1 ), N, DWORK, N,
$ ZERO, AK, LDAK )
CALL DGEES( 'N', 'N', SELECT, N, AK, LDAK, SDIM, DWORK( I6+1 ),
$ DWORK( I7+1 ), DWORK( IWRK+1 ), N, DWORK( IWRK+1 ),
$ LDWORK-IWRK, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 4
RETURN
END IF
LWA = INT( DWORK( IWRK+1 ) ) + IWRK
LWAMAX = MAX( LWA, LWAMAX )
GAMMA = ZERO
DO 50 I = 1, N
GAMMA = MAX( GAMMA, DWORK( I6+I ) )
50 CONTINUE
GAMMA = FACTOR*SQRT( ONE + GAMMA )
C
C Workspace usage.
C
I3 = I2 + N*NP
I4 = I3 + NP*NP
I5 = I4 + NP*NP
I6 = I5 + NP*NP
I7 = I6 + NP
I8 = I7 + NP*NP
I9 = I8 + NP*NP
I10 = I9 + NP*NP
I11 = I10 + N*NP
I12 = I11 + N*NP
I13 = I12 + ( NP+M )*( NP+M )
I14 = I13 + N*( NP+M )
I15 = I14 + N*( NP+M )
I16 = I15 + N*N
I17 = I16 + N2
I18 = I17 + N2
I19 = I18 + N2
I20 = I19 + ( N2+NP+M )*( N2+NP+M )
I21 = I20 + ( N2+NP+M )*N2
C
IWRK = I21 + N2*N2
C
C Compute Q*C' .
C
CALL DGEMM( 'N', 'T', N, NP, N, ONE, DWORK( I1+1 ), N, C, LDC,
$ ZERO, DWORK( I2+1 ), N )
C
C Compute Ip + C*Q*C' .
C
CALL DLASET( 'Full', NP, NP, ZERO, ONE, DWORK( I3+1 ), NP )
CALL DGEMM( 'N', 'N', NP, NP, N, ONE, C, LDC, DWORK( I2+1 ), N,
$ ONE, DWORK( I3+1 ), NP )
C
C Compute the eigenvalues and eigenvectors of Ip + C'*Q*C
C
CALL DLACPY( 'U', NP, NP, DWORK( I3+1 ), NP, DWORK( I5+1 ), NP )
CALL DSYEV( 'V', 'U', NP, DWORK( I5+1 ), NP, DWORK( I6+1 ),
$ DWORK( IWRK+1 ), LDWORK-IWRK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 4
RETURN
END IF
LWA = INT( DWORK( IWRK+1 ) ) + IWRK
LWAMAX = MAX( LWA, LWAMAX )
C -1
C Compute ( Ip + C'*Q*C ) .
C
DO 70 J = 1, NP
DO 60 I = 1, NP
DWORK( I9+I+(J-1)*NP ) = DWORK( I5+J+(I-1)*NP ) /
$ DWORK( I6+I )
60 CONTINUE
70 CONTINUE
CALL DGEMM( 'N', 'N', NP, NP, NP, ONE, DWORK( I5+1 ), NP,
$ DWORK( I9+1 ), NP, ZERO, DWORK( I4+1 ), NP )
C
C Compute Z2 .
C
DO 90 J = 1, NP
DO 80 I = 1, NP
DWORK( I9+I+(J-1)*NP ) = DWORK( I5+J+(I-1)*NP ) /
$ SQRT( DWORK( I6+I ) )
80 CONTINUE
90 CONTINUE
CALL DGEMM( 'N', 'N', NP, NP, NP, ONE, DWORK( I5+1 ), NP,
$ DWORK( I9+1 ), NP, ZERO, DWORK( I7+1 ), NP )
C -1
C Compute Z2 .
C
DO 110 J = 1, NP
DO 100 I = 1, NP
DWORK( I9+I+(J-1)*NP ) = DWORK( I5+J+(I-1)*NP )*
$ SQRT( DWORK( I6+I ) )
100 CONTINUE
110 CONTINUE
CALL DGEMM( 'N', 'N', NP, NP, NP, ONE, DWORK( I5+1 ), NP,
$ DWORK( I9+1 ), NP, ZERO, DWORK( I8+1 ), NP )
C
C Compute A*Q*C' .
C
CALL DGEMM( 'N', 'N', N, NP, N, ONE, A, LDA, DWORK( I2+1 ), N,
$ ZERO, DWORK( I10+1 ), N )
C -1
C Compute H = -A*Q*C'*( Ip + C*Q*C' ) .
C
CALL DGEMM( 'N', 'N', N, NP, NP, -ONE, DWORK( I10+1 ), N,
$ DWORK( I4+1 ), NP, ZERO, DWORK( I11+1 ), N )
C
C Compute Rx .
C
CALL DLASET( 'F', NP+M, NP+M, ZERO, ONE, DWORK( I12+1 ), NP+M )
DO 130 J = 1, NP
DO 120 I = 1, NP
DWORK( I12+I+(J-1)*(NP+M) ) = DWORK( I3+I+(J-1)*NP )
120 CONTINUE
DWORK( I12+J+(J-1)*(NP+M) ) = DWORK( I3+J+(J-1)*NP ) -
$ GAMMA*GAMMA
130 CONTINUE
C
C Compute Bx .
C
CALL DGEMM( 'N', 'N', N, NP, NP, -ONE, DWORK( I11+1 ), N,
$ DWORK( I8+1 ), NP, ZERO, DWORK( I13+1 ), N )
DO 150 J = 1, M
DO 140 I = 1, N
DWORK( I13+N*NP+I+(J-1)*N ) = B( I, J )
140 CONTINUE
150 CONTINUE
C
C Compute Sx .
C
CALL DGEMM( 'T', 'N', N, NP, NP, ONE, C, LDC, DWORK( I8+1 ), NP,
$ ZERO, DWORK( I14+1 ), N )
CALL DLASET( 'F', N, M, ZERO, ZERO, DWORK( I14+N*NP+1 ), N )
C
C Solve the Riccati equation
C -1
C X = A'*X*A + Cx - (Sx + A'*X*Bx)*(Rx + Bx'*X*B ) *(Sx'+Bx'*X*A).
C
CALL SB02OD( 'D', 'B', 'C', 'U', 'N', 'S', N, NP+M, NP, A, LDA,
$ DWORK( I13+1 ), N, C, LDC, DWORK( I12+1 ), NP+M,
$ DWORK( I14+1 ), N, RCOND( 3 ), DWORK( I15+1 ), N,
$ DWORK( I16+1 ), DWORK( I17+1 ), DWORK( I18+1 ),
$ DWORK( I19+1 ), N2+NP+M, DWORK( I20+1 ), N2+NP+M,
$ DWORK( I21+1 ), N2, -ONE, IWORK, DWORK( IWRK+1 ),
$ LDWORK-IWRK, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 3
RETURN
END IF
LWA = INT( DWORK( IWRK+1 ) ) + IWRK
LWAMAX = MAX( LWA, LWAMAX )
C
I22 = I16
I23 = I22 + ( NP+M )*N
I24 = I23 + ( NP+M )*( NP+M )
I25 = I24 + ( NP+M )*N
I26 = I25 + M*N
C
IWRK = I25
C
C Compute Bx'*X .
C
CALL DGEMM( 'T', 'N', NP+M, N, N, ONE, DWORK( I13+1 ), N,
$ DWORK( I15+1 ), N, ZERO, DWORK( I22+1 ), NP+M )
C
C Compute Rx + Bx'*X*Bx .
C
CALL DLACPY( 'F', NP+M, NP+M, DWORK( I12+1 ), NP+M,
$ DWORK( I23+1 ), NP+M )
CALL DGEMM( 'N', 'N', NP+M, NP+M, N, ONE, DWORK( I22+1 ), NP+M,
$ DWORK( I13+1 ), N, ONE, DWORK( I23+1 ), NP+M )
C
C Compute -( Sx' + Bx'*X*A ) .
C
DO 170 J = 1, N
DO 160 I = 1, NP+M
DWORK( I24+I+(J-1)*(NP+M) ) = DWORK( I14+J+(I-1)*N )
160 CONTINUE
170 CONTINUE
CALL DGEMM( 'N', 'N', NP+M, N, N, -ONE, DWORK( I22+1 ), NP+M,
$ A, LDA, -ONE, DWORK( I24+1 ), NP+M )
C
C Factorize Rx + Bx'*X*Bx .
C
RNORM = DLANSY( '1', 'U', NP+M, DWORK( I23+1 ), NP+M,
$ DWORK( IWRK+1 ) )
CALL DSYTRF( 'U', NP+M, DWORK( I23+1 ), NP+M, IWORK,
$ DWORK( IWRK+1 ), LDWORK-IWRK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 5
RETURN
END IF
LWA = INT( DWORK( IWRK+1 ) ) + IWRK
LWAMAX = MAX( LWA, LWAMAX )
CALL DSYCON( 'U', NP+M, DWORK( I23+1 ), NP+M, IWORK, RNORM,
$ RCOND( 4 ), DWORK( IWRK+1 ), IWORK( NP+M+1), INFO2 )
C -1
C Compute F = -( Rx + Bx'*X*Bx ) ( Sx' + Bx'*X*A ) .
C
CALL DSYTRS( 'U', NP+M, N, DWORK( I23+1 ), NP+M, IWORK,
$ DWORK( I24+1 ), NP+M, INFO2 )
C
C Compute B'*X .
C
CALL DGEMM( 'T', 'N', M, N, N, ONE, B, LDB, DWORK( I15+1 ), N,
$ ZERO, DWORK( I25+1 ), M )
C
C Compute Im + B'*X*B .
C
CALL DLASET( 'F', M, M, ZERO, ONE, DWORK( I23+1 ), M )
CALL DGEMM( 'N', 'N', M, M, N, ONE, DWORK( I25+1 ), M, B, LDB,
$ ONE, DWORK( I23+1 ), M )
C
C Factorize Im + B'*X*B .
C
CALL DPOTRF( 'U', M, DWORK( I23+1 ), M, INFO2 )
C -1
C Compute ( Im + B'*X*B ) B'*X .
C
CALL DPOTRS( 'U', M, N, DWORK( I23+1 ), M, DWORK( I25+1 ), M,
$ INFO2 )
C -1
C Compute Dk = ( Im + B'*X*B ) B'*X*H .
C
CALL DGEMM( 'N', 'N', M, NP, N, ONE, DWORK( I25+1 ), M,
$ DWORK( I11+1 ), N, ZERO, DK, LDDK )
C
C Compute Bk = -H + B*Dk .
C
CALL DLACPY( 'F', N, NP, DWORK( I11+1 ), N, BK, LDBK )
CALL DGEMM( 'N', 'N', N, NP, M, ONE, B, LDB, DK, LDDK, -ONE,
$ BK, LDBK )
C -1
C Compute Dk*Z2 .
C
CALL DGEMM( 'N', 'N', M, NP, NP, ONE, DK, LDDK, DWORK( I8+1 ),
$ NP, ZERO, DWORK( I26+1 ), M )
C
C Compute F1 + Z2*C .
C
CALL DLACPY( 'F', NP, N, DWORK( I24+1 ), NP+M, DWORK( I12+1 ),
$ NP )
CALL DGEMM( 'N', 'N', NP, N, NP, ONE, DWORK( I7+1 ), NP, C, LDC,
$ ONE, DWORK( I12+1 ), NP )
C -1
C Compute Ck = F2 - Dk*Z2 *( F1 + Z2*C ) .
C
CALL DLACPY( 'F', M, N, DWORK( I24+NP+1 ), NP+M, CK, LDCK )
CALL DGEMM( 'N', 'N', M, N, NP, -ONE, DWORK( I26+1 ), M,
$ DWORK( I12+1 ), NP, ONE, CK, LDCK )
C
C Compute Ak = A + H*C + B*Ck .
C
CALL DLACPY( 'F', N, N, A, LDA, AK, LDAK )
CALL DGEMM( 'N', 'N', N, N, NP, ONE, DWORK( I11+1 ), N, C, LDC,
$ ONE, AK, LDAK )
CALL DGEMM( 'N', 'N', N, N, M, ONE, B, LDB, CK, LDCK, ONE, AK,
$ LDAK )
C
C Workspace usage.
C
I1 = M*N
I2 = I1 + N2*N2
I3 = I2 + N2
C
IWRK = I3 + N2
C
C Compute Dk*C .
C
CALL DGEMM( 'N', 'N', M, N, NP, ONE, DK, LDDK, C, LDC, ZERO,
$ DWORK, M )
C
C Compute the closed-loop state matrix.
C
CALL DLACPY( 'F', N, N, A, LDA, DWORK( I1+1 ), N2 )
CALL DGEMM( 'N', 'N', N, N, M, -ONE, B, LDB, DWORK, M, ONE,
$ DWORK( I1+1 ), N2 )
CALL DGEMM( 'N', 'N', N, N, NP, -ONE, BK, LDBK, C, LDC, ZERO,
$ DWORK( I1+N+1 ), N2 )
CALL DGEMM( 'N', 'N', N, N, M, ONE, B, LDB, CK, LDCK, ZERO,
$ DWORK( I1+N2*N+1 ), N2 )
CALL DLACPY( 'F', N, N, AK, LDAK, DWORK( I1+N2*N+N+1 ), N2 )
C
C Compute the closed-loop poles.
C
CALL DGEES( 'N', 'N', SELECT, N2, DWORK( I1+1 ), N2, SDIM,
$ DWORK( I2+1 ), DWORK( I3+1 ), DWORK( IWRK+1 ), N,
$ DWORK( IWRK+1 ), LDWORK-IWRK, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 4
RETURN
END IF
LWA = INT( DWORK( IWRK+1 ) ) + IWRK
LWAMAX = MAX( LWA, LWAMAX )
C
C Check the stability of the closed-loop system.
C
NS = 0
DO 180 I = 1, N2
IF( DLAPY2( DWORK( I2+I ), DWORK( I3+I ) ).GT.ONE ) NS = NS + 1
180 CONTINUE
IF( NS.GT.0 ) THEN
INFO = 6
RETURN
END IF
C
DWORK( 1 ) = DBLE( LWAMAX )
RETURN
C *** Last line of SB10KD ***
END
|