File: SB10MD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (670 lines) | stat: -rw-r--r-- 24,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
      SUBROUTINE SB10MD( NC, MP, LENDAT, F, ORD, MNB, NBLOCK, ITYPE,
     $                   QUTOL, A, LDA, B, LDB, C, LDC, D, LDD, OMEGA,
     $                   TOTORD, AD, LDAD, BD, LDBD, CD, LDCD, DD, LDDD,
     $                   MJU, IWORK, LIWORK, DWORK, LDWORK, ZWORK,
     $                   LZWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To perform the D-step in the D-K iteration. It handles
C     continuous-time case.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     NC      (input) INTEGER
C             The order of the matrix A.  NC >= 0.
C
C     MP      (input) INTEGER
C             The order of the matrix D.  MP >= 0.
C
C     LENDAT  (input) INTEGER
C             The length of the vector OMEGA.  LENDAT >= 2.
C
C     F       (input) INTEGER
C             The number of the measurements and controls, i.e.,
C             the size of the block I_f in the D-scaling system.
C             F >= 0.
C
C     ORD     (input/output) INTEGER
C             The MAX order of EACH block in the fitting procedure.
C             ORD <= LENDAT-1.
C             On exit, if ORD < 1 then ORD = 1.
C
C     MNB     (input) INTEGER
C             The number of diagonal blocks in the block structure of
C             the uncertainty, and the length of the vectors NBLOCK
C             and ITYPE.  1 <= MNB <= MP.
C
C     NBLOCK  (input) INTEGER array, dimension (MNB)
C             The vector of length MNB containing the block structure
C             of the uncertainty. NBLOCK(I), I = 1:MNB, is the size of
C             each block.
C
C     ITYPE   (input) INTEGER array, dimension (MNB)
C             The vector of length MNB indicating the type of each
C             block.
C             For I = 1 : MNB,
C             ITYPE(I) = 1 indicates that the corresponding block is a
C             real block. IN THIS CASE ONLY MJU(JW) WILL BE ESTIMATED
C             CORRECTLY, BUT NOT D(S)!
C             ITYPE(I) = 2 indicates that the corresponding block is a
C             complex block. THIS IS THE ONLY ALLOWED VALUE NOW!
C             NBLOCK(I) must be equal to 1 if ITYPE(I) is equal to 1.
C
C     QUTOL   (input) DOUBLE PRECISION
C             The acceptable mean relative error between the D(jw) and
C             the frequency responce of the estimated block
C             [ADi,BDi;CDi,DDi]. When it is reached, the result is
C             taken as good enough.
C             A good value is QUTOL = 2.0.
C             If QUTOL < 0 then only mju(jw) is being estimated,
C             not D(s).
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,NC)
C             On entry, the leading NC-by-NC part of this array must
C             contain the A matrix of the closed-loop system.
C             On exit, if MP > 0, the leading NC-by-NC part of this
C             array contains an upper Hessenberg matrix similar to A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,NC).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,MP)
C             On entry, the leading NC-by-MP part of this array must
C             contain the B matrix of the closed-loop system.
C             On exit, the leading NC-by-MP part of this array contains
C             the transformed B matrix corresponding to the Hessenberg
C             form of A.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,NC).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,NC)
C             On entry, the leading MP-by-NC part of this array must
C             contain the C matrix of the closed-loop system.
C             On exit, the leading MP-by-NC part of this array contains
C             the transformed C matrix corresponding to the Hessenberg
C             form of A.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,MP).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,MP)
C             The leading MP-by-MP part of this array must contain the
C             D matrix of the closed-loop system.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= MAX(1,MP).
C
C     OMEGA   (input) DOUBLE PRECISION array, dimension (LENDAT)
C             The vector with the frequencies.
C
C     TOTORD  (output) INTEGER
C             The TOTAL order of the D-scaling system.
C             TOTORD is set to zero, if QUTOL < 0.
C
C     AD      (output) DOUBLE PRECISION array, dimension (LDAD,MP*ORD)
C             The leading TOTORD-by-TOTORD part of this array contains
C             the A matrix of the D-scaling system.
C             Not referenced if QUTOL < 0.
C
C     LDAD    INTEGER
C             The leading dimension of the array AD.
C             LDAD >= MAX(1,MP*ORD), if QUTOL >= 0;
C             LDAD >= 1,             if QUTOL <  0.
C
C     BD      (output) DOUBLE PRECISION array, dimension (LDBD,MP+F)
C             The leading TOTORD-by-(MP+F) part of this array contains
C             the B matrix of the D-scaling system.
C             Not referenced if QUTOL < 0.
C
C     LDBD    INTEGER
C             The leading dimension of the array BD.
C             LDBD >= MAX(1,MP*ORD), if QUTOL >= 0;
C             LDBD >= 1,             if QUTOL <  0.
C
C     CD      (output) DOUBLE PRECISION array, dimension (LDCD,MP*ORD)
C             The leading (MP+F)-by-TOTORD part of this array contains
C             the C matrix of the D-scaling system.
C             Not referenced if QUTOL < 0.
C
C     LDCD    INTEGER
C             The leading dimension of the array CD.
C             LDCD >= MAX(1,MP+F), if QUTOL >= 0;
C             LDCD >= 1,           if QUTOL <  0.
C
C     DD      (output) DOUBLE PRECISION array, dimension (LDDD,MP+F)
C             The leading (MP+F)-by-(MP+F) part of this array contains
C             the D matrix of the D-scaling system.
C             Not referenced if QUTOL < 0.
C
C     LDDD    INTEGER
C             The leading dimension of the array DD.
C             LDDD >= MAX(1,MP+F), if QUTOL >= 0;
C             LDDD >= 1,           if QUTOL <  0.
C
C     MJU     (output) DOUBLE PRECISION array, dimension (LENDAT)
C             The vector with the upper bound of the structured
C             singular value (mju) for each frequency in OMEGA.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C
C     LIWORK  INTEGER
C             The length of the array IWORK.
C             LIWORK >= MAX( NC, 4*MNB-2, MP, 2*ORD+1 ), if QUTOL >= 0;
C             LIWORK >= MAX( NC, 4*MNB-2, MP ),          if QUTOL <  0.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK, DWORK(2) returns the optimal value of LZWORK,
C             and DWORK(3) returns an estimate of the minimum reciprocal
C             of the condition numbers (with respect to inversion) of
C             the generated Hessenberg matrices.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX( 3, LWM, LWD ), where
C             LWM = LWA + MAX( NC + MAX( NC, MP-1 ),
C                              2*MP*MP*MNB - MP*MP + 9*MNB*MNB +
C                              MP*MNB + 11*MP + 33*MNB - 11 );
C             LWD = LWB + MAX( 2, LW1, LW2, LW3, LW4, 2*ORD ),
C                              if QUTOL >= 0;
C             LWD = 0,         if QUTOL <  0;
C             LWA = MP*LENDAT + 2*MNB + MP - 1;
C             LWB = LENDAT*(MP + 2) + ORD*(ORD + 2) + 1;
C             LW1 = 2*LENDAT + 4*HNPTS;  HNPTS = 2048;
C             LW2 =   LENDAT + 6*HNPTS;  MN  = MIN( 2*LENDAT, 2*ORD+1 );
C             LW3 = 2*LENDAT*(2*ORD + 1) + MAX( 2*LENDAT, 2*ORD + 1 ) +
C                   MAX( MN + 6*ORD + 4, 2*MN + 1 );
C             LW4 = MAX( ORD*ORD + 5*ORD, 6*ORD + 1 + MIN( 1, ORD ) ).
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C
C     LZWORK  INTEGER
C             The length of the array ZWORK.
C             LZWORK >= MAX( LZM, LZD ), where
C             LZM = MAX( MP*MP + NC*MP + NC*NC + 2*NC,
C                        6*MP*MP*MNB + 13*MP*MP + 6*MNB + 6*MP - 3 );
C             LZD = MAX( LENDAT*(2*ORD + 3), ORD*ORD + 3*ORD + 1 ),
C                              if QUTOL >= 0;
C             LZD = 0,         if QUTOL <  0.
C
C     Error indicator
C
C     INFO    (output) INTEGER
C             =  0:  successful exit;
C             <  0:  if INFO = -i, the i-th argument had an illegal
C                    value;
C             =  1:  if one or more values w in OMEGA are (close to
C                    some) poles of the closed-loop system, i.e., the
C                    matrix jw*I - A is (numerically) singular;
C             =  2:  the block sizes must be positive integers;
C             =  3:  the sum of block sizes must be equal to MP;
C             =  4:  the size of a real block must be equal to 1;
C             =  5:  the block type must be either 1 or 2;
C             =  6:  errors in solving linear equations or in matrix
C                    inversion;
C             =  7:  errors in computing eigenvalues or singular values.
C             = 1i:  INFO on exit from SB10YD is i. (1i means 10 + i.)
C
C     METHOD
C
C     I.   First, W(jw) for the given closed-loop system is being
C          estimated.
C     II.  Now, AB13MD SLICOT subroutine can obtain the D(jw) scaling
C          system with respect to NBLOCK and ITYPE, and colaterally,
C          mju(jw).
C          If QUTOL < 0 then the estimations stop and the routine exits.
C     III. Now that we have D(jw), SB10YD subroutine can do block-by-
C          block fit. For each block it tries with an increasing order
C          of the fit, starting with 1 until the
C          (mean quadratic error + max quadratic error)/2
C          between the Dii(jw) and the estimated frequency responce
C          of the block becomes less than or equal to the routine
C          argument QUTOL, or the order becomes equal to ORD.
C     IV.  Arrange the obtained blocks in the AD, BD, CD and DD
C          matrices and estimate the total order of D(s), TOTORD.
C     V.   Add the system I_f to the system obtained in IV.
C
C     REFERENCES
C
C     [1] Balas, G., Doyle, J., Glover, K., Packard, A. and Smith, R.
C         Mu-analysis and Synthesis toolbox - User's Guide,
C         The Mathworks Inc., Natick, MA, USA, 1998.
C
C     CONTRIBUTORS
C
C     Asparuh Markovski, Technical University of Sofia, July 2003.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Aug. 2003.
C     A. Markovski, V. Sima, October 2003.
C
C     KEYWORDS
C
C     Frequency response, H-infinity optimal control, robust control,
C     structured singular value.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE
      PARAMETER          ( ZERO  = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
     $                     THREE = 3.0D+0 )
      INTEGER            HNPTS
      PARAMETER          ( HNPTS = 2048 )
C     ..
C     .. Scalar Arguments ..
      INTEGER           F, INFO, LDA, LDAD, LDB, LDBD, LDC, LDCD, LDD,
     $                  LDDD, LDWORK, LENDAT, LIWORK, LZWORK, MNB, MP,
     $                  NC, ORD, TOTORD
      DOUBLE PRECISION  QUTOL
C     ..
C     .. Array Arguments ..
      INTEGER           ITYPE(*), IWORK(*), NBLOCK(*)
      DOUBLE PRECISION  A(LDA, *), AD(LDAD, *), B(LDB, *), BD(LDBD, *),
     $                  C(LDC, *), CD(LDCD, *), D(LDD, *), DD(LDDD, *),
     $                  DWORK(*), MJU(*), OMEGA(*)
      COMPLEX*16        ZWORK(*)
C     ..
C     .. Local Scalars ..
      CHARACTER         BALEIG, INITA
      INTEGER           CLWMAX, CORD, DLWMAX, I, IC, ICWRK, IDWRK, II,
     $                  INFO2, IWAD, IWB, IWBD, IWCD, IWDD, IWGJOM,
     $                  IWIFRD, IWRFRD, IWX, K, LCSIZE, LDSIZE, LORD,
     $                  LW1, LW2, LW3, LW4, LWA, LWB, MAXCWR, MAXWRK,
     $                  MN, W
      DOUBLE PRECISION  MAQE, MEQE, MOD1, MOD2, RCND, RCOND, RQE, TOL,
     $                  TOLER
      COMPLEX*16        FREQ
C     ..
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH
C     ..
C     .. External Subroutines ..
      EXTERNAL          AB13MD, DCOPY, DLACPY, DLASET, DSCAL, SB10YD,
     $                  TB05AD, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DCMPLX, INT, MAX, MIN, SQRT
C
C     Decode and test input parameters.
C
C     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C     Workspace usage 1.
C
C     real
C
      IWX    = 1 + MP*LENDAT
      IWGJOM = IWX + 2*MNB - 1
      IDWRK  = IWGJOM + MP
      LDSIZE = LDWORK - IDWRK + 1
C
C     complex
C
      IWB    = MP*MP + 1
      ICWRK  = IWB + NC*MP
      LCSIZE = LZWORK - ICWRK + 1
C
      INFO = 0
      IF ( NC.LT.0 ) THEN
         INFO = -1
      ELSE IF( MP.LT.0 ) THEN
         INFO = -2
      ELSE IF( LENDAT.LT.2 ) THEN
         INFO = -3
      ELSE IF( F.LT.0 ) THEN
         INFO = -4
      ELSE IF( ORD.GT.LENDAT - 1 ) THEN
         INFO = -5
      ELSE IF( MNB.LT.1 .OR. MNB.GT.MP ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, NC ) ) THEN
         INFO = -11
      ELSE IF( LDB.LT.MAX( 1, NC ) ) THEN
         INFO = -13
      ELSE IF( LDC.LT.MAX( 1, MP ) ) THEN
         INFO = -15
      ELSE IF( LDD.LT.MAX( 1, MP ) ) THEN
         INFO = -17
      ELSE IF( LDAD.LT.1 .OR. ( QUTOL.GE.ZERO .AND. LDAD.LT.MP*ORD ) )
     $      THEN
         INFO = -21
      ELSE IF( LDBD.LT.1 .OR. ( QUTOL.GE.ZERO .AND. LDBD.LT.MP*ORD ) )
     $      THEN
         INFO = -23
      ELSE IF( LDCD.LT.1 .OR. ( QUTOL.GE.ZERO .AND. LDCD.LT.MP + F ) )
     $      THEN
         INFO = -25
      ELSE IF( LDDD.LT.1 .OR. ( QUTOL.GE.ZERO .AND. LDDD.LT.MP + F ) )
     $      THEN
         INFO = -27
      ELSE
C
C        Compute workspace.
C
         II  = MAX( NC, 4*MNB - 2, MP )
         MN  = MIN( 2*LENDAT, 2*ORD + 1 )
         LWA = IDWRK - 1
         LWB = LENDAT*( MP + 2 ) + ORD*( ORD + 2 ) + 1
         LW1 = 2*LENDAT + 4*HNPTS
         LW2 =   LENDAT + 6*HNPTS
         LW3 = 2*LENDAT*( 2*ORD + 1 ) + MAX( 2*LENDAT, 2*ORD + 1 ) +
     $                                  MAX( MN + 6*ORD + 4, 2*MN + 1 )
         LW4 = MAX( ORD*ORD + 5*ORD, 6*ORD + 1 + MIN( 1, ORD ) )
C
         DLWMAX = LWA + MAX( NC + MAX( NC, MP - 1 ),
     $                       2*MP*MP*MNB - MP*MP + 9*MNB*MNB + MP*MNB +
     $                       11*MP + 33*MNB - 11 )
C
         CLWMAX = MAX( ICWRK - 1 + NC*NC + 2*NC,
     $                 6*MP*MP*MNB + 13*MP*MP + 6*MNB + 6*MP - 3 )
C
         IF ( QUTOL.GE.ZERO ) THEN
            II     = MAX( II, 2*ORD + 1 )
            DLWMAX = MAX( DLWMAX,
     $                    LWB + MAX( 2, LW1, LW2, LW3, LW4, 2*ORD ) )
            CLWMAX = MAX( CLWMAX, LENDAT*( 2*ORD + 3 ),
     $                    ORD*( ORD + 3 ) + 1 )
         END IF
         IF ( LIWORK.LT.II ) THEN
            INFO = -30
         ELSE IF ( LDWORK.LT.MAX( 3, DLWMAX ) ) THEN
            INFO = -32
         ELSE IF ( LZWORK.LT.CLWMAX ) THEN
            INFO = -34
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB10MD', -INFO )
         RETURN
      END IF
C
      ORD    = MAX( 1, ORD )
      TOTORD = 0
C
C     Quick return if possible.
C
      IF( NC.EQ.0 .OR. MP.EQ.0 ) THEN
         DWORK(1) = THREE
         DWORK(2) = ZERO
         DWORK(3) = ONE
         RETURN
      END IF
C
      TOLER = SQRT( DLAMCH( 'Epsilon' ) )
C
      BALEIG = 'C'
      RCOND  = ONE
      MAXCWR = CLWMAX
C
C     @@@ 1. Estimate W(jw) for the closed-loop system, @@@
C     @@@      D(jw) and mju(jw) for each frequency.    @@@
C
      DO 30 W = 1, LENDAT
         FREQ = DCMPLX( ZERO, OMEGA(W) )
         IF ( W.EQ.1 ) THEN
            INITA = 'G'
         ELSE
            INITA = 'H'
         END IF
C
C        Compute C*inv(jw*I-A)*B.
C        Integer workspace: need   NC.
C        Real workspace:    need   LWA + NC + MAX(NC,MP-1);
C                           prefer larger,
C                           where  LWA = MP*LENDAT + 2*MNB + MP - 1.
C        Complex workspace: need   MP*MP + NC*MP + NC*NC + 2*NC.
C
         CALL TB05AD( BALEIG, INITA, NC, MP, MP, FREQ, A, LDA, B, LDB,
     $                C, LDC, RCND, ZWORK, MP, DWORK, DWORK, ZWORK(IWB),
     $                NC, IWORK, DWORK(IDWRK), LDSIZE, ZWORK(ICWRK),
     $                LCSIZE, INFO2 )
C
         IF ( INFO2.GT.0 ) THEN
            INFO = 1
            RETURN
         END IF
C
         RCOND = MIN( RCOND, RCND )
         IF ( W.EQ.1 )
     $      MAXWRK = INT( DWORK(IDWRK) + IDWRK - 1 )
         IC = 0
C
C        D + C*inv(jw*I-A)*B
C
         DO 20 K = 1, MP
            DO 10 I = 1, MP
               IC = IC + 1
               ZWORK(IC) = ZWORK(IC) + DCMPLX ( D(I,K), ZERO )
   10       CONTINUE
   20    CONTINUE
C
C        Estimate D(jw) and mju(jw).
C        Integer workspace: need   MAX(4*MNB-2,MP).
C        Real workspace:    need   LWA + 2*MP*MP*MNB - MP*MP + 9*MNB*MNB
C                                  + MP*MNB + 11*MP + 33*MNB - 11;
C                           prefer larger.
C        Complex workspace: need   6*MP*MP*MNB + 13*MP*MP + 6*MNB +
C                                  6*MP - 3.
C
         CALL AB13MD( 'N', MP, ZWORK, MP, MNB, NBLOCK, ITYPE,
     $                DWORK(IWX), MJU(W), DWORK((W-1)*MP+1),
     $                DWORK(IWGJOM), IWORK, DWORK(IDWRK), LDSIZE,
     $                ZWORK(IWB), LZWORK-IWB+1, INFO2 )
C
         IF ( INFO2.NE.0 ) THEN
            INFO = INFO2 + 1
            RETURN
         END IF
C
         IF ( W.EQ.1 ) THEN
            MAXWRK = MAX( MAXWRK, INT( DWORK(IDWRK) ) + IDWRK - 1 )
            MAXCWR = MAX( MAXCWR, INT( ZWORK(IWB) ) + IWB - 1 )
         END IF
C
C        Normalize D(jw) through it's last entry.
C
         IF ( DWORK(W*MP).NE.ZERO )
     $      CALL DSCAL( MP, ONE/DWORK(W*MP), DWORK((W-1)*MP+1), 1 )
C
   30 CONTINUE
C
C     Quick return if needed.
C
      IF ( QUTOL.LT.ZERO ) THEN
         DWORK(1) = MAXWRK
         DWORK(2) = MAXCWR
         DWORK(3) = RCOND
         RETURN
      END IF
C
C     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C     Workspace usage 2.
C
C     real
C
      IWRFRD = IWX
      IWIFRD = IWRFRD + LENDAT
      IWAD   = IWIFRD + LENDAT
      IWBD   = IWAD + ORD*ORD
      IWCD   = IWBD + ORD
      IWDD   = IWCD + ORD
      IDWRK  = IWDD + 1
      LDSIZE = LDWORK - IDWRK + 1
C
C     complex
C
      ICWRK  = ORD + 2
      LCSIZE = LZWORK - ICWRK + 1
      INITA  = 'H'
C
C     Use default tolerance for SB10YD.
C
      TOL = -ONE
C
C     @@@ 2. Clear imag parts of D(jw) for SB10YD. @@@
C
      DO 40 I = 1, LENDAT
         DWORK(IWIFRD+I-1) = ZERO
   40 CONTINUE
C
C     @@@ 3. Clear AD, BD, CD and initialize DD with I_(mp+f). @@@
C
      CALL DLASET( 'Full', MP*ORD, MP*ORD, ZERO, ZERO, AD, LDAD )
      CALL DLASET( 'Full', MP*ORD, MP+F,   ZERO, ZERO, BD, LDBD )
      CALL DLASET( 'Full', MP+F,   MP*ORD, ZERO, ZERO, CD, LDCD )
      CALL DLASET( 'Full', MP+F,   MP+F,   ZERO, ONE,  DD, LDDD )
C
C     @@@ 4. Block by block frequency identification. @@@
C
      DO 80 II = 1, MP
C
         CALL DCOPY( LENDAT, DWORK(II), MP, DWORK(IWRFRD), 1 )
C
C        Increase CORD from 1 to ORD for every block, if needed.
C
         CORD = 1
C
   50    CONTINUE
            LORD = CORD
C
C           Now, LORD is the desired order.
C           Integer workspace: need   2*N+1, where N = LORD.
C           Real workspace:    need   LWB + MAX( 2, LW1, LW2, LW3, LW4),
C                                     where
C                                     LWB = LENDAT*(MP+2) +
C                                           ORD*(ORD+2) + 1,
C                                     HNPTS = 2048, and
C                                     LW1 = 2*LENDAT + 4*HNPTS;
C                                     LW2 =   LENDAT + 6*HNPTS;
C                                     MN  = min( 2*LENDAT, 2*N+1 )
C                                     LW3 = 2*LENDAT*(2*N+1) +
C                                           max( 2*LENDAT, 2*N+1 ) +
C                                           max( MN + 6*N + 4, 2*MN+1 );
C                                     LW4 = max( N*N + 5*N,
C                                                6*N + 1 + min( 1,N ) );
C                              prefer larger.
C           Complex workspace: need   LENDAT*(2*N+3).
C
            CALL SB10YD( 0, 1, LENDAT, DWORK(IWRFRD), DWORK(IWIFRD),
     $                   OMEGA, LORD, DWORK(IWAD), ORD, DWORK(IWBD),
     $                   DWORK(IWCD), DWORK(IWDD), TOL, IWORK,
     $                   DWORK(IDWRK), LDSIZE, ZWORK, LZWORK, INFO2 )
C
C           At this point, LORD is the actual order reached by SB10YD,
C           0 <= LORD <= CORD.
C           [ADi,BDi; CDi,DDi] is a minimal realization with ADi in
C           upper Hessenberg form.
C           The leading LORD-by-LORD part of ORD-by-ORD DWORK(IWAD)
C           contains ADi, the leading LORD-by-1 part of ORD-by-1
C           DWORK(IWBD) contains BDi, the leading 1-by-LORD part of
C           1-by-ORD DWORK(IWCD) contains CDi, DWORK(IWDD) contains DDi.
C
            IF ( INFO2.NE.0 ) THEN
               INFO = 10 + INFO2
               RETURN
            END IF
C
C          Compare the original D(jw) with the fitted one.
C
            MEQE = ZERO
            MAQE = ZERO
C
            DO 60 W = 1, LENDAT
               FREQ = DCMPLX( ZERO, OMEGA(W) )
C
C              Compute CD*inv(jw*I-AD)*BD.
C              Integer workspace: need   LORD.
C              Real workspace:    need   LWB + 2*LORD;
C                                 prefer larger.
C              Complex workspace: need   1 + ORD + LORD*LORD + 2*LORD.
C
               CALL TB05AD( BALEIG, INITA, LORD, 1, 1, FREQ,
     $                      DWORK(IWAD), ORD, DWORK(IWBD), ORD,
     $                      DWORK(IWCD), 1, RCND, ZWORK, 1,
     $                      DWORK(IDWRK), DWORK(IDWRK), ZWORK(2), ORD,
     $                      IWORK, DWORK(IDWRK), LDSIZE, ZWORK(ICWRK),
     $                      LCSIZE, INFO2 )
C
               IF ( INFO2.GT.0 ) THEN
                  INFO = 1
                  RETURN
               END IF
C
               RCOND = MIN( RCOND, RCND )
               IF ( W.EQ.1 )
     $            MAXWRK = MAX( MAXWRK, INT( DWORK(IDWRK) ) + IDWRK - 1)
C
C              DD + CD*inv(jw*I-AD)*BD
C
               ZWORK(1) = ZWORK(1) + DCMPLX( DWORK(IWDD), ZERO )
C
               MOD1 = ABS( DWORK(IWRFRD+W-1) )
               MOD2 = ABS( ZWORK(1) )
               RQE  = ABS( ( MOD1 - MOD2 )/( MOD1 + TOLER ) )
               MEQE = MEQE + RQE
               MAQE = MAX( MAQE, RQE )
C
   60       CONTINUE
C
            MEQE = MEQE/LENDAT
C
            IF ( ( ( MEQE + MAQE )/TWO.LE.QUTOL ) .OR.
     $           ( CORD.EQ.ORD ) ) THEN
               GOTO 70
            END IF
C
            CORD = CORD + 1
         GOTO 50
C
   70    TOTORD = TOTORD + LORD
C
C        Copy ad(ii), bd(ii) and cd(ii) to AD, BD and CD, respectively.
C
         CALL DLACPY( 'Full', LORD, LORD, DWORK(IWAD), ORD,
     $                AD(TOTORD-LORD+1,TOTORD-LORD+1), LDAD )
         CALL DCOPY(  LORD, DWORK(IWBD), 1, BD(TOTORD-LORD+1,II), 1 )
         CALL DCOPY(  LORD, DWORK(IWCD), 1, CD(II,TOTORD-LORD+1), LDCD )
C
C        Copy dd(ii) to DD.
C
         DD(II,II) = DWORK(IWDD)
C
   80 CONTINUE
C
      DWORK(1) = MAXWRK
      DWORK(2) = MAXCWR
      DWORK(3) = RCOND
      RETURN
C
C *** Last line of SB10MD ***
      END