1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
SUBROUTINE SB10MD( NC, MP, LENDAT, F, ORD, MNB, NBLOCK, ITYPE,
$ QUTOL, A, LDA, B, LDB, C, LDC, D, LDD, OMEGA,
$ TOTORD, AD, LDAD, BD, LDBD, CD, LDCD, DD, LDDD,
$ MJU, IWORK, LIWORK, DWORK, LDWORK, ZWORK,
$ LZWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To perform the D-step in the D-K iteration. It handles
C continuous-time case.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C NC (input) INTEGER
C The order of the matrix A. NC >= 0.
C
C MP (input) INTEGER
C The order of the matrix D. MP >= 0.
C
C LENDAT (input) INTEGER
C The length of the vector OMEGA. LENDAT >= 2.
C
C F (input) INTEGER
C The number of the measurements and controls, i.e.,
C the size of the block I_f in the D-scaling system.
C F >= 0.
C
C ORD (input/output) INTEGER
C The MAX order of EACH block in the fitting procedure.
C ORD <= LENDAT-1.
C On exit, if ORD < 1 then ORD = 1.
C
C MNB (input) INTEGER
C The number of diagonal blocks in the block structure of
C the uncertainty, and the length of the vectors NBLOCK
C and ITYPE. 1 <= MNB <= MP.
C
C NBLOCK (input) INTEGER array, dimension (MNB)
C The vector of length MNB containing the block structure
C of the uncertainty. NBLOCK(I), I = 1:MNB, is the size of
C each block.
C
C ITYPE (input) INTEGER array, dimension (MNB)
C The vector of length MNB indicating the type of each
C block.
C For I = 1 : MNB,
C ITYPE(I) = 1 indicates that the corresponding block is a
C real block. IN THIS CASE ONLY MJU(JW) WILL BE ESTIMATED
C CORRECTLY, BUT NOT D(S)!
C ITYPE(I) = 2 indicates that the corresponding block is a
C complex block. THIS IS THE ONLY ALLOWED VALUE NOW!
C NBLOCK(I) must be equal to 1 if ITYPE(I) is equal to 1.
C
C QUTOL (input) DOUBLE PRECISION
C The acceptable mean relative error between the D(jw) and
C the frequency responce of the estimated block
C [ADi,BDi;CDi,DDi]. When it is reached, the result is
C taken as good enough.
C A good value is QUTOL = 2.0.
C If QUTOL < 0 then only mju(jw) is being estimated,
C not D(s).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,NC)
C On entry, the leading NC-by-NC part of this array must
C contain the A matrix of the closed-loop system.
C On exit, if MP > 0, the leading NC-by-NC part of this
C array contains an upper Hessenberg matrix similar to A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,NC).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,MP)
C On entry, the leading NC-by-MP part of this array must
C contain the B matrix of the closed-loop system.
C On exit, the leading NC-by-MP part of this array contains
C the transformed B matrix corresponding to the Hessenberg
C form of A.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= MAX(1,NC).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,NC)
C On entry, the leading MP-by-NC part of this array must
C contain the C matrix of the closed-loop system.
C On exit, the leading MP-by-NC part of this array contains
C the transformed C matrix corresponding to the Hessenberg
C form of A.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= MAX(1,MP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,MP)
C The leading MP-by-MP part of this array must contain the
C D matrix of the closed-loop system.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= MAX(1,MP).
C
C OMEGA (input) DOUBLE PRECISION array, dimension (LENDAT)
C The vector with the frequencies.
C
C TOTORD (output) INTEGER
C The TOTAL order of the D-scaling system.
C TOTORD is set to zero, if QUTOL < 0.
C
C AD (output) DOUBLE PRECISION array, dimension (LDAD,MP*ORD)
C The leading TOTORD-by-TOTORD part of this array contains
C the A matrix of the D-scaling system.
C Not referenced if QUTOL < 0.
C
C LDAD INTEGER
C The leading dimension of the array AD.
C LDAD >= MAX(1,MP*ORD), if QUTOL >= 0;
C LDAD >= 1, if QUTOL < 0.
C
C BD (output) DOUBLE PRECISION array, dimension (LDBD,MP+F)
C The leading TOTORD-by-(MP+F) part of this array contains
C the B matrix of the D-scaling system.
C Not referenced if QUTOL < 0.
C
C LDBD INTEGER
C The leading dimension of the array BD.
C LDBD >= MAX(1,MP*ORD), if QUTOL >= 0;
C LDBD >= 1, if QUTOL < 0.
C
C CD (output) DOUBLE PRECISION array, dimension (LDCD,MP*ORD)
C The leading (MP+F)-by-TOTORD part of this array contains
C the C matrix of the D-scaling system.
C Not referenced if QUTOL < 0.
C
C LDCD INTEGER
C The leading dimension of the array CD.
C LDCD >= MAX(1,MP+F), if QUTOL >= 0;
C LDCD >= 1, if QUTOL < 0.
C
C DD (output) DOUBLE PRECISION array, dimension (LDDD,MP+F)
C The leading (MP+F)-by-(MP+F) part of this array contains
C the D matrix of the D-scaling system.
C Not referenced if QUTOL < 0.
C
C LDDD INTEGER
C The leading dimension of the array DD.
C LDDD >= MAX(1,MP+F), if QUTOL >= 0;
C LDDD >= 1, if QUTOL < 0.
C
C MJU (output) DOUBLE PRECISION array, dimension (LENDAT)
C The vector with the upper bound of the structured
C singular value (mju) for each frequency in OMEGA.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C
C LIWORK INTEGER
C The length of the array IWORK.
C LIWORK >= MAX( NC, 4*MNB-2, MP, 2*ORD+1 ), if QUTOL >= 0;
C LIWORK >= MAX( NC, 4*MNB-2, MP ), if QUTOL < 0.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, DWORK(2) returns the optimal value of LZWORK,
C and DWORK(3) returns an estimate of the minimum reciprocal
C of the condition numbers (with respect to inversion) of
C the generated Hessenberg matrices.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 3, LWM, LWD ), where
C LWM = LWA + MAX( NC + MAX( NC, MP-1 ),
C 2*MP*MP*MNB - MP*MP + 9*MNB*MNB +
C MP*MNB + 11*MP + 33*MNB - 11 );
C LWD = LWB + MAX( 2, LW1, LW2, LW3, LW4, 2*ORD ),
C if QUTOL >= 0;
C LWD = 0, if QUTOL < 0;
C LWA = MP*LENDAT + 2*MNB + MP - 1;
C LWB = LENDAT*(MP + 2) + ORD*(ORD + 2) + 1;
C LW1 = 2*LENDAT + 4*HNPTS; HNPTS = 2048;
C LW2 = LENDAT + 6*HNPTS; MN = MIN( 2*LENDAT, 2*ORD+1 );
C LW3 = 2*LENDAT*(2*ORD + 1) + MAX( 2*LENDAT, 2*ORD + 1 ) +
C MAX( MN + 6*ORD + 4, 2*MN + 1 );
C LW4 = MAX( ORD*ORD + 5*ORD, 6*ORD + 1 + MIN( 1, ORD ) ).
C
C ZWORK COMPLEX*16 array, dimension (LZWORK)
C
C LZWORK INTEGER
C The length of the array ZWORK.
C LZWORK >= MAX( LZM, LZD ), where
C LZM = MAX( MP*MP + NC*MP + NC*NC + 2*NC,
C 6*MP*MP*MNB + 13*MP*MP + 6*MNB + 6*MP - 3 );
C LZD = MAX( LENDAT*(2*ORD + 3), ORD*ORD + 3*ORD + 1 ),
C if QUTOL >= 0;
C LZD = 0, if QUTOL < 0.
C
C Error indicator
C
C INFO (output) INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if one or more values w in OMEGA are (close to
C some) poles of the closed-loop system, i.e., the
C matrix jw*I - A is (numerically) singular;
C = 2: the block sizes must be positive integers;
C = 3: the sum of block sizes must be equal to MP;
C = 4: the size of a real block must be equal to 1;
C = 5: the block type must be either 1 or 2;
C = 6: errors in solving linear equations or in matrix
C inversion;
C = 7: errors in computing eigenvalues or singular values.
C = 1i: INFO on exit from SB10YD is i. (1i means 10 + i.)
C
C METHOD
C
C I. First, W(jw) for the given closed-loop system is being
C estimated.
C II. Now, AB13MD SLICOT subroutine can obtain the D(jw) scaling
C system with respect to NBLOCK and ITYPE, and colaterally,
C mju(jw).
C If QUTOL < 0 then the estimations stop and the routine exits.
C III. Now that we have D(jw), SB10YD subroutine can do block-by-
C block fit. For each block it tries with an increasing order
C of the fit, starting with 1 until the
C (mean quadratic error + max quadratic error)/2
C between the Dii(jw) and the estimated frequency responce
C of the block becomes less than or equal to the routine
C argument QUTOL, or the order becomes equal to ORD.
C IV. Arrange the obtained blocks in the AD, BD, CD and DD
C matrices and estimate the total order of D(s), TOTORD.
C V. Add the system I_f to the system obtained in IV.
C
C REFERENCES
C
C [1] Balas, G., Doyle, J., Glover, K., Packard, A. and Smith, R.
C Mu-analysis and Synthesis toolbox - User's Guide,
C The Mathworks Inc., Natick, MA, USA, 1998.
C
C CONTRIBUTORS
C
C Asparuh Markovski, Technical University of Sofia, July 2003.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 2003.
C A. Markovski, V. Sima, October 2003.
C
C KEYWORDS
C
C Frequency response, H-infinity optimal control, robust control,
C structured singular value.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ THREE = 3.0D+0 )
INTEGER HNPTS
PARAMETER ( HNPTS = 2048 )
C ..
C .. Scalar Arguments ..
INTEGER F, INFO, LDA, LDAD, LDB, LDBD, LDC, LDCD, LDD,
$ LDDD, LDWORK, LENDAT, LIWORK, LZWORK, MNB, MP,
$ NC, ORD, TOTORD
DOUBLE PRECISION QUTOL
C ..
C .. Array Arguments ..
INTEGER ITYPE(*), IWORK(*), NBLOCK(*)
DOUBLE PRECISION A(LDA, *), AD(LDAD, *), B(LDB, *), BD(LDBD, *),
$ C(LDC, *), CD(LDCD, *), D(LDD, *), DD(LDDD, *),
$ DWORK(*), MJU(*), OMEGA(*)
COMPLEX*16 ZWORK(*)
C ..
C .. Local Scalars ..
CHARACTER BALEIG, INITA
INTEGER CLWMAX, CORD, DLWMAX, I, IC, ICWRK, IDWRK, II,
$ INFO2, IWAD, IWB, IWBD, IWCD, IWDD, IWGJOM,
$ IWIFRD, IWRFRD, IWX, K, LCSIZE, LDSIZE, LORD,
$ LW1, LW2, LW3, LW4, LWA, LWB, MAXCWR, MAXWRK,
$ MN, W
DOUBLE PRECISION MAQE, MEQE, MOD1, MOD2, RCND, RCOND, RQE, TOL,
$ TOLER
COMPLEX*16 FREQ
C ..
C .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
C ..
C .. External Subroutines ..
EXTERNAL AB13MD, DCOPY, DLACPY, DLASET, DSCAL, SB10YD,
$ TB05AD, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, DCMPLX, INT, MAX, MIN, SQRT
C
C Decode and test input parameters.
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C Workspace usage 1.
C
C real
C
IWX = 1 + MP*LENDAT
IWGJOM = IWX + 2*MNB - 1
IDWRK = IWGJOM + MP
LDSIZE = LDWORK - IDWRK + 1
C
C complex
C
IWB = MP*MP + 1
ICWRK = IWB + NC*MP
LCSIZE = LZWORK - ICWRK + 1
C
INFO = 0
IF ( NC.LT.0 ) THEN
INFO = -1
ELSE IF( MP.LT.0 ) THEN
INFO = -2
ELSE IF( LENDAT.LT.2 ) THEN
INFO = -3
ELSE IF( F.LT.0 ) THEN
INFO = -4
ELSE IF( ORD.GT.LENDAT - 1 ) THEN
INFO = -5
ELSE IF( MNB.LT.1 .OR. MNB.GT.MP ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, NC ) ) THEN
INFO = -11
ELSE IF( LDB.LT.MAX( 1, NC ) ) THEN
INFO = -13
ELSE IF( LDC.LT.MAX( 1, MP ) ) THEN
INFO = -15
ELSE IF( LDD.LT.MAX( 1, MP ) ) THEN
INFO = -17
ELSE IF( LDAD.LT.1 .OR. ( QUTOL.GE.ZERO .AND. LDAD.LT.MP*ORD ) )
$ THEN
INFO = -21
ELSE IF( LDBD.LT.1 .OR. ( QUTOL.GE.ZERO .AND. LDBD.LT.MP*ORD ) )
$ THEN
INFO = -23
ELSE IF( LDCD.LT.1 .OR. ( QUTOL.GE.ZERO .AND. LDCD.LT.MP + F ) )
$ THEN
INFO = -25
ELSE IF( LDDD.LT.1 .OR. ( QUTOL.GE.ZERO .AND. LDDD.LT.MP + F ) )
$ THEN
INFO = -27
ELSE
C
C Compute workspace.
C
II = MAX( NC, 4*MNB - 2, MP )
MN = MIN( 2*LENDAT, 2*ORD + 1 )
LWA = IDWRK - 1
LWB = LENDAT*( MP + 2 ) + ORD*( ORD + 2 ) + 1
LW1 = 2*LENDAT + 4*HNPTS
LW2 = LENDAT + 6*HNPTS
LW3 = 2*LENDAT*( 2*ORD + 1 ) + MAX( 2*LENDAT, 2*ORD + 1 ) +
$ MAX( MN + 6*ORD + 4, 2*MN + 1 )
LW4 = MAX( ORD*ORD + 5*ORD, 6*ORD + 1 + MIN( 1, ORD ) )
C
DLWMAX = LWA + MAX( NC + MAX( NC, MP - 1 ),
$ 2*MP*MP*MNB - MP*MP + 9*MNB*MNB + MP*MNB +
$ 11*MP + 33*MNB - 11 )
C
CLWMAX = MAX( ICWRK - 1 + NC*NC + 2*NC,
$ 6*MP*MP*MNB + 13*MP*MP + 6*MNB + 6*MP - 3 )
C
IF ( QUTOL.GE.ZERO ) THEN
II = MAX( II, 2*ORD + 1 )
DLWMAX = MAX( DLWMAX,
$ LWB + MAX( 2, LW1, LW2, LW3, LW4, 2*ORD ) )
CLWMAX = MAX( CLWMAX, LENDAT*( 2*ORD + 3 ),
$ ORD*( ORD + 3 ) + 1 )
END IF
IF ( LIWORK.LT.II ) THEN
INFO = -30
ELSE IF ( LDWORK.LT.MAX( 3, DLWMAX ) ) THEN
INFO = -32
ELSE IF ( LZWORK.LT.CLWMAX ) THEN
INFO = -34
END IF
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB10MD', -INFO )
RETURN
END IF
C
ORD = MAX( 1, ORD )
TOTORD = 0
C
C Quick return if possible.
C
IF( NC.EQ.0 .OR. MP.EQ.0 ) THEN
DWORK(1) = THREE
DWORK(2) = ZERO
DWORK(3) = ONE
RETURN
END IF
C
TOLER = SQRT( DLAMCH( 'Epsilon' ) )
C
BALEIG = 'C'
RCOND = ONE
MAXCWR = CLWMAX
C
C @@@ 1. Estimate W(jw) for the closed-loop system, @@@
C @@@ D(jw) and mju(jw) for each frequency. @@@
C
DO 30 W = 1, LENDAT
FREQ = DCMPLX( ZERO, OMEGA(W) )
IF ( W.EQ.1 ) THEN
INITA = 'G'
ELSE
INITA = 'H'
END IF
C
C Compute C*inv(jw*I-A)*B.
C Integer workspace: need NC.
C Real workspace: need LWA + NC + MAX(NC,MP-1);
C prefer larger,
C where LWA = MP*LENDAT + 2*MNB + MP - 1.
C Complex workspace: need MP*MP + NC*MP + NC*NC + 2*NC.
C
CALL TB05AD( BALEIG, INITA, NC, MP, MP, FREQ, A, LDA, B, LDB,
$ C, LDC, RCND, ZWORK, MP, DWORK, DWORK, ZWORK(IWB),
$ NC, IWORK, DWORK(IDWRK), LDSIZE, ZWORK(ICWRK),
$ LCSIZE, INFO2 )
C
IF ( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
C
RCOND = MIN( RCOND, RCND )
IF ( W.EQ.1 )
$ MAXWRK = INT( DWORK(IDWRK) + IDWRK - 1 )
IC = 0
C
C D + C*inv(jw*I-A)*B
C
DO 20 K = 1, MP
DO 10 I = 1, MP
IC = IC + 1
ZWORK(IC) = ZWORK(IC) + DCMPLX ( D(I,K), ZERO )
10 CONTINUE
20 CONTINUE
C
C Estimate D(jw) and mju(jw).
C Integer workspace: need MAX(4*MNB-2,MP).
C Real workspace: need LWA + 2*MP*MP*MNB - MP*MP + 9*MNB*MNB
C + MP*MNB + 11*MP + 33*MNB - 11;
C prefer larger.
C Complex workspace: need 6*MP*MP*MNB + 13*MP*MP + 6*MNB +
C 6*MP - 3.
C
CALL AB13MD( 'N', MP, ZWORK, MP, MNB, NBLOCK, ITYPE,
$ DWORK(IWX), MJU(W), DWORK((W-1)*MP+1),
$ DWORK(IWGJOM), IWORK, DWORK(IDWRK), LDSIZE,
$ ZWORK(IWB), LZWORK-IWB+1, INFO2 )
C
IF ( INFO2.NE.0 ) THEN
INFO = INFO2 + 1
RETURN
END IF
C
IF ( W.EQ.1 ) THEN
MAXWRK = MAX( MAXWRK, INT( DWORK(IDWRK) ) + IDWRK - 1 )
MAXCWR = MAX( MAXCWR, INT( ZWORK(IWB) ) + IWB - 1 )
END IF
C
C Normalize D(jw) through it's last entry.
C
IF ( DWORK(W*MP).NE.ZERO )
$ CALL DSCAL( MP, ONE/DWORK(W*MP), DWORK((W-1)*MP+1), 1 )
C
30 CONTINUE
C
C Quick return if needed.
C
IF ( QUTOL.LT.ZERO ) THEN
DWORK(1) = MAXWRK
DWORK(2) = MAXCWR
DWORK(3) = RCOND
RETURN
END IF
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C Workspace usage 2.
C
C real
C
IWRFRD = IWX
IWIFRD = IWRFRD + LENDAT
IWAD = IWIFRD + LENDAT
IWBD = IWAD + ORD*ORD
IWCD = IWBD + ORD
IWDD = IWCD + ORD
IDWRK = IWDD + 1
LDSIZE = LDWORK - IDWRK + 1
C
C complex
C
ICWRK = ORD + 2
LCSIZE = LZWORK - ICWRK + 1
INITA = 'H'
C
C Use default tolerance for SB10YD.
C
TOL = -ONE
C
C @@@ 2. Clear imag parts of D(jw) for SB10YD. @@@
C
DO 40 I = 1, LENDAT
DWORK(IWIFRD+I-1) = ZERO
40 CONTINUE
C
C @@@ 3. Clear AD, BD, CD and initialize DD with I_(mp+f). @@@
C
CALL DLASET( 'Full', MP*ORD, MP*ORD, ZERO, ZERO, AD, LDAD )
CALL DLASET( 'Full', MP*ORD, MP+F, ZERO, ZERO, BD, LDBD )
CALL DLASET( 'Full', MP+F, MP*ORD, ZERO, ZERO, CD, LDCD )
CALL DLASET( 'Full', MP+F, MP+F, ZERO, ONE, DD, LDDD )
C
C @@@ 4. Block by block frequency identification. @@@
C
DO 80 II = 1, MP
C
CALL DCOPY( LENDAT, DWORK(II), MP, DWORK(IWRFRD), 1 )
C
C Increase CORD from 1 to ORD for every block, if needed.
C
CORD = 1
C
50 CONTINUE
LORD = CORD
C
C Now, LORD is the desired order.
C Integer workspace: need 2*N+1, where N = LORD.
C Real workspace: need LWB + MAX( 2, LW1, LW2, LW3, LW4),
C where
C LWB = LENDAT*(MP+2) +
C ORD*(ORD+2) + 1,
C HNPTS = 2048, and
C LW1 = 2*LENDAT + 4*HNPTS;
C LW2 = LENDAT + 6*HNPTS;
C MN = min( 2*LENDAT, 2*N+1 )
C LW3 = 2*LENDAT*(2*N+1) +
C max( 2*LENDAT, 2*N+1 ) +
C max( MN + 6*N + 4, 2*MN+1 );
C LW4 = max( N*N + 5*N,
C 6*N + 1 + min( 1,N ) );
C prefer larger.
C Complex workspace: need LENDAT*(2*N+3).
C
CALL SB10YD( 0, 1, LENDAT, DWORK(IWRFRD), DWORK(IWIFRD),
$ OMEGA, LORD, DWORK(IWAD), ORD, DWORK(IWBD),
$ DWORK(IWCD), DWORK(IWDD), TOL, IWORK,
$ DWORK(IDWRK), LDSIZE, ZWORK, LZWORK, INFO2 )
C
C At this point, LORD is the actual order reached by SB10YD,
C 0 <= LORD <= CORD.
C [ADi,BDi; CDi,DDi] is a minimal realization with ADi in
C upper Hessenberg form.
C The leading LORD-by-LORD part of ORD-by-ORD DWORK(IWAD)
C contains ADi, the leading LORD-by-1 part of ORD-by-1
C DWORK(IWBD) contains BDi, the leading 1-by-LORD part of
C 1-by-ORD DWORK(IWCD) contains CDi, DWORK(IWDD) contains DDi.
C
IF ( INFO2.NE.0 ) THEN
INFO = 10 + INFO2
RETURN
END IF
C
C Compare the original D(jw) with the fitted one.
C
MEQE = ZERO
MAQE = ZERO
C
DO 60 W = 1, LENDAT
FREQ = DCMPLX( ZERO, OMEGA(W) )
C
C Compute CD*inv(jw*I-AD)*BD.
C Integer workspace: need LORD.
C Real workspace: need LWB + 2*LORD;
C prefer larger.
C Complex workspace: need 1 + ORD + LORD*LORD + 2*LORD.
C
CALL TB05AD( BALEIG, INITA, LORD, 1, 1, FREQ,
$ DWORK(IWAD), ORD, DWORK(IWBD), ORD,
$ DWORK(IWCD), 1, RCND, ZWORK, 1,
$ DWORK(IDWRK), DWORK(IDWRK), ZWORK(2), ORD,
$ IWORK, DWORK(IDWRK), LDSIZE, ZWORK(ICWRK),
$ LCSIZE, INFO2 )
C
IF ( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
C
RCOND = MIN( RCOND, RCND )
IF ( W.EQ.1 )
$ MAXWRK = MAX( MAXWRK, INT( DWORK(IDWRK) ) + IDWRK - 1)
C
C DD + CD*inv(jw*I-AD)*BD
C
ZWORK(1) = ZWORK(1) + DCMPLX( DWORK(IWDD), ZERO )
C
MOD1 = ABS( DWORK(IWRFRD+W-1) )
MOD2 = ABS( ZWORK(1) )
RQE = ABS( ( MOD1 - MOD2 )/( MOD1 + TOLER ) )
MEQE = MEQE + RQE
MAQE = MAX( MAQE, RQE )
C
60 CONTINUE
C
MEQE = MEQE/LENDAT
C
IF ( ( ( MEQE + MAQE )/TWO.LE.QUTOL ) .OR.
$ ( CORD.EQ.ORD ) ) THEN
GOTO 70
END IF
C
CORD = CORD + 1
GOTO 50
C
70 TOTORD = TOTORD + LORD
C
C Copy ad(ii), bd(ii) and cd(ii) to AD, BD and CD, respectively.
C
CALL DLACPY( 'Full', LORD, LORD, DWORK(IWAD), ORD,
$ AD(TOTORD-LORD+1,TOTORD-LORD+1), LDAD )
CALL DCOPY( LORD, DWORK(IWBD), 1, BD(TOTORD-LORD+1,II), 1 )
CALL DCOPY( LORD, DWORK(IWCD), 1, CD(II,TOTORD-LORD+1), LDCD )
C
C Copy dd(ii) to DD.
C
DD(II,II) = DWORK(IWDD)
C
80 CONTINUE
C
DWORK(1) = MAXWRK
DWORK(2) = MAXCWR
DWORK(3) = RCOND
RETURN
C
C *** Last line of SB10MD ***
END
|