File: SB10YD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (689 lines) | stat: -rw-r--r-- 22,113 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
      SUBROUTINE SB10YD( DISCFL, FLAG, LENDAT, RFRDAT, IFRDAT, OMEGA, N,
     $                   A, LDA, B, C, D, TOL, IWORK, DWORK, LDWORK,
     $                   ZWORK, LZWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To fit a supplied frequency response data with a stable, minimum
C     phase SISO (single-input single-output) system represented by its
C     matrices A, B, C, D. It handles both discrete- and continuous-time
C     cases.
C
C     ARGUMENTS
C
C     Input/Output parameters
C
C     DISCFL  (input) INTEGER
C             Indicates the type of the system, as follows:
C             = 0: continuous-time system;
C             = 1: discrete-time system.
C
C     FLAG    (input) INTEGER
C             If FLAG = 0, then the system zeros and poles are not
C             constrained.
C             If FLAG = 1, then the system zeros and poles will have
C             negative real parts in the continuous-time case, or moduli
C             less than 1 in the discrete-time case. Consequently, FLAG
C             must be equal to 1 in mu-synthesis routines.
C
C     LENDAT  (input) INTEGER
C             The length of the vectors RFRDAT, IFRDAT and OMEGA.
C             LENDAT >= 2.
C
C     RFRDAT  (input) DOUBLE PRECISION array, dimension (LENDAT)
C             The real part of the frequency data to be fitted.
C
C     IFRDAT  (input) DOUBLE PRECISION array, dimension (LENDAT)
C             The imaginary part of the frequency data to be fitted.
C
C     OMEGA   (input) DOUBLE PRECISION array, dimension (LENDAT)
C             The frequencies corresponding to RFRDAT and IFRDAT.
C             These values must be nonnegative and monotonically
C             increasing. Additionally, for discrete-time systems
C             they must be between 0 and PI.
C
C     N       (input/output) INTEGER
C             On entry, the desired order of the system to be fitted.
C             N <= LENDAT-1.
C             On exit, the order of the obtained system. The value of N
C             could only be modified if N > 0 and FLAG = 1.
C
C     A       (output) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array contains the
C             matrix A. If FLAG = 1, then A is in an upper Hessenberg
C             form, and corresponds to a minimal realization.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (output) DOUBLE PRECISION array, dimension (N)
C             The computed vector B.
C
C     C       (output) DOUBLE PRECISION array, dimension (N)
C             The computed vector C. If FLAG = 1, the first N-1 elements
C             are zero (for the exit value of N).
C
C     D       (output) DOUBLE PRECISION array, dimension (1)
C             The computed scalar D.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used for determining the effective
C             rank of matrices. If the user sets TOL > 0, then the given
C             value of TOL is used as a lower bound for the reciprocal
C             condition number;  a (sub)matrix whose estimated condition
C             number is less than 1/TOL is considered to be of full
C             rank.  If the user sets TOL <= 0, then an implicitly
C             computed, default tolerance, defined by TOLDEF = SIZE*EPS,
C             is used instead, where SIZE is the product of the matrix
C             dimensions, and EPS is the machine precision (see LAPACK
C             Library routine DLAMCH).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension max(2,2*N+1)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK and DWORK(2) contains the optimal value of
C             LZWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK = max( 2, LW1, LW2, LW3, LW4 ), where
C             LW1 = 2*LENDAT + 4*HNPTS;  HNPTS = 2048;
C             LW2 =   LENDAT + 6*HNPTS;
C             MN  = min( 2*LENDAT, 2*N+1 )
C             LW3 = 2*LENDAT*(2*N+1) + max( 2*LENDAT, 2*N+1 ) +
C                   max( MN + 6*N + 4, 2*MN + 1 ), if N > 0;
C             LW3 = 4*LENDAT + 5                 , if N = 0;
C             LW4 = max( N*N + 5*N, 6*N + 1 + min( 1,N ) ), if FLAG = 1;
C             LW4 = 0,                                      if FLAG = 0.
C             For optimum performance LDWORK should be larger.
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C
C     LZWORK  INTEGER
C             The length of the array ZWORK.
C             LZWORK = LENDAT*(2*N+3), if N > 0;
C             LZWORK = LENDAT,         if N = 0.
C
C     Error indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the discrete --> continuous transformation cannot
C                   be made;
C             = 2:  if the system poles cannot be found;
C             = 3:  if the inverse system cannot be found, i.e., D is
C                   (close to) zero;
C             = 4:  if the system zeros cannot be found;
C             = 5:  if the state-space representation of the new
C                   transfer function T(s) cannot be found;
C             = 6:  if the continuous --> discrete transformation cannot
C                   be made.
C
C     METHOD
C
C     First, if the given frequency data are corresponding to a
C     continuous-time system, they are changed to a discrete-time
C     system using a bilinear transformation with a scaled alpha.
C     Then, the magnitude is obtained from the supplied data.
C     Then, the frequency data are linearly interpolated around
C     the unit-disc.
C     Then, Oppenheim and Schafer complex cepstrum method is applied
C     to get frequency data corresponding to a stable, minimum-
C     phase system. This is done in the following steps:
C     - Obtain LOG (magnitude)
C     - Obtain IFFT of the result (DG01MD SLICOT subroutine);
C     - halve the data at 0;
C     - Obtain FFT of the halved data (DG01MD SLICOT subroutine);
C     - Obtain EXP of the result.
C     Then, the new frequency data are interpolated back to the
C     original frequency.
C     Then, based on these newly obtained data, the system matrices
C     A, B, C, D are constructed; the very identification is
C     performed by Least Squares Method using DGELSY LAPACK subroutine.
C     If needed, a discrete-to-continuous time transformation is
C     applied on the system matrices by AB04MD SLICOT subroutine.
C     Finally, if requested, the poles and zeros of the system are
C     checked. If some of them have positive real parts in the
C     continuous-time case (or are not inside the unit disk in the
C     complex plane in the discrete-time case), they are exchanged with
C     their negatives (or reciprocals, respectively), to preserve the
C     frequency response, while getting a minimum phase and stable
C     system. This is done by SB10ZP SLICOT subroutine.
C
C     REFERENCES
C
C     [1] Oppenheim, A.V. and Schafer, R.W.
C         Discrete-Time Signal Processing.
C         Prentice-Hall Signal Processing Series, 1989.
C
C     [2] Balas, G., Doyle, J., Glover, K., Packard, A., and Smith, R.
C         Mu-analysis and Synthesis toolbox - User's Guide,
C         The Mathworks Inc., Natick, MA, USA, 1998.
C
C     CONTRIBUTORS
C
C     Asparuh Markovski, Technical University of Sofia, July 2003.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Aug. 2003.
C     A. Markovski, Technical University of Sofia, October 2003.
C
C     KEYWORDS
C
C     Bilinear transformation, frequency response, least-squares
C     approximation, stability.
C
C     ******************************************************************
C
C     .. Parameters ..
      COMPLEX*16         ZZERO, ZONE
      PARAMETER          ( ZZERO = ( 0.0D+0, 0.0D+0 ),
     $                     ZONE  = ( 1.0D+0, 0.0D+0 ) )
      DOUBLE PRECISION   ZERO, ONE, TWO, FOUR, TEN
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
     $                     FOUR = 4.0D+0, TEN = 1.0D+1 )
      INTEGER            HNPTS
      PARAMETER          ( HNPTS = 2048 )
C     ..
C     .. Scalar Arguments ..
      INTEGER            DISCFL, FLAG, INFO, LDA, LDWORK, LENDAT,
     $                   LZWORK, N
      DOUBLE PRECISION   TOL
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK(*)
      DOUBLE PRECISION   A(LDA, *), B(*), C(*), D(*), DWORK(*),
     $                   IFRDAT(*), OMEGA(*), RFRDAT(*)
      COMPLEX*16         ZWORK(*)
C     ..
C     .. Local Scalars ..
      INTEGER            CLWMAX, DLWMAX, I, II, INFO2, IP1, IP2, ISTART,
     $                   ISTOP, IWA0, IWAB, IWBMAT, IWBP, IWBX, IWDME,
     $                   IWDOMO, IWMAG, IWS, IWVAR, IWXI, IWXR, IWYMAG,
     $                   K, LW1, LW2, LW3, LW4, MN, N1, N2, P, RANK
      DOUBLE PRECISION   P1, P2, PI, PW, RAT, TOLB, TOLL
      COMPLEX*16         XHAT(HNPTS/2)
C     ..
C     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           DLAMCH, DLAPY2
C     ..
C     .. External Subroutines ..
      EXTERNAL           AB04MD, DCOPY, DG01MD, DGELSY, DLASET, DSCAL,
     $                   SB10ZP, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          ACOS, ATAN, COS, DBLE, DCMPLX, DIMAG, EXP, LOG,
     $                   MAX, MIN, SIN, SQRT
C
C     Test input parameters and workspace.
C
      PI = FOUR*ATAN( ONE )
      PW = OMEGA(1)
      N1 = N + 1
      N2 = N + N1
C
      INFO = 0
      IF( DISCFL.NE.0 .AND. DISCFL.NE.1 ) THEN
         INFO = -1
      ELSE IF( FLAG.NE.0 .AND. FLAG.NE.1 ) THEN
         INFO = -2
      ELSE IF ( LENDAT.LT.2 ) THEN
         INFO = -3
      ELSE IF ( PW.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( N.GT.LENDAT - 1 ) THEN
         INFO = -7
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE
C
         DO 10 K = 2, LENDAT
            IF ( OMEGA(K).LT.PW )
     $         INFO = -6
            PW = OMEGA(K)
   10    CONTINUE
C
         IF ( DISCFL.EQ.1 .AND. OMEGA(LENDAT).GT.PI )
     $      INFO = -6
      END IF
C
      IF ( INFO.EQ.0 ) THEN
C
C        Workspace.
C
         LW1 = 2*LENDAT + 4*HNPTS
         LW2 =   LENDAT + 6*HNPTS
         MN  = MIN( 2*LENDAT, N2 )
C
         IF ( N.GT.0 ) THEN
            LW3 = 2*LENDAT*N2 + MAX( 2*LENDAT, N2 ) +
     $                          MAX( MN + 6*N + 4, 2*MN + 1 )
         ELSE
            LW3 = 4*LENDAT + 5
         END IF
C
         IF ( FLAG.EQ.0 ) THEN
            LW4 = 0
         ELSE
            LW4 = MAX( N*N + 5*N, 6*N + 1 + MIN ( 1, N ) )
         END IF
C
         DLWMAX = MAX( 2, LW1, LW2, LW3, LW4 )
C
         IF ( N.GT.0 ) THEN
            CLWMAX = LENDAT*( N2 + 2 )
         ELSE
            CLWMAX = LENDAT
         END IF
C
         IF ( LDWORK.LT.DLWMAX ) THEN
            INFO = -16
         ELSE IF ( LZWORK.LT.CLWMAX ) THEN
            INFO = -18
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB10YD', -INFO )
         RETURN
      END IF
C
C     Set tolerances.
C
      TOLB = DLAMCH( 'Epsilon' )
      TOLL = TOL
      IF ( TOLL.LE.ZERO )
     $   TOLL = FOUR*DBLE( LENDAT*N )*TOLB
C
C     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C     Workspace usage 1.
C     Workspace:  need  2*LENDAT + 4*HNPTS.
C
      IWDOMO = 1
      IWDME  = IWDOMO + LENDAT
      IWYMAG = IWDME  + 2*HNPTS
      IWMAG  = IWYMAG + 2*HNPTS
C
C     Bilinear transformation.
C
      IF ( DISCFL.EQ.0 ) THEN
         PW = SQRT( OMEGA(1)*OMEGA(LENDAT) + SQRT( TOLB ) )
C
         DO 20 K = 1, LENDAT
            DWORK(IWDME+K-1)  = ( OMEGA(K)/PW )**2
            DWORK(IWDOMO+K-1) =
     $         ACOS( ( ONE - DWORK(IWDME+K-1) )/
     $               ( ONE + DWORK(IWDME+K-1) ) )
   20    CONTINUE
C
      ELSE
         CALL DCOPY( LENDAT, OMEGA, 1, DWORK(IWDOMO), 1 )
      END IF
C
C     Linear interpolation.
C
      DO 30 K = 1, LENDAT
         DWORK(IWMAG+K-1) = DLAPY2( RFRDAT(K), IFRDAT(K) )
         DWORK(IWMAG+K-1) = ( ONE/LOG( TEN ) ) * LOG( DWORK(IWMAG+K-1) )
   30 CONTINUE
C
      DO 40 K = 1, HNPTS
         DWORK(IWDME+K-1)  = ( K - 1 )*PI/HNPTS
         DWORK(IWYMAG+K-1) = ZERO
C
         IF ( DWORK(IWDME+K-1).LT.DWORK(IWDOMO) ) THEN
            DWORK(IWYMAG+K-1) = DWORK(IWMAG)
         ELSE IF ( DWORK(IWDME+K-1).GE.DWORK(IWDOMO+LENDAT-1) ) THEN
            DWORK(IWYMAG+K-1) = DWORK(IWMAG+LENDAT-1)
         END IF
C
   40 CONTINUE
C
      DO 60 I = 2, LENDAT
         P1 = HNPTS*DWORK(IWDOMO+I-2)/PI + ONE
C
         IP1 = INT( P1 )
         IF ( DBLE( IP1 ).NE.P1 )
     $      IP1 = IP1 + 1
C
         P2 = HNPTS*DWORK(IWDOMO+I-1)/PI + ONE
C
         IP2 = INT( P2 )
         IF ( DBLE( IP2 ).NE.P2 )
     $      IP2 = IP2 + 1
C
         DO 50 P = IP1, IP2 - 1
            RAT = DWORK(IWDME+P-1) - DWORK(IWDOMO+I-2)
            RAT = RAT/( DWORK(IWDOMO+I-1) - DWORK(IWDOMO+I-2) )
            DWORK(IWYMAG+P-1) = ( ONE - RAT )*DWORK(IWMAG+I-2) +
     $                          RAT*DWORK(IWMAG+I-1)
   50    CONTINUE
C
   60 CONTINUE
C
      DO 70 K = 1, HNPTS
         DWORK(IWYMAG+K-1) = EXP( LOG( TEN )*DWORK(IWYMAG+K-1) )
   70 CONTINUE
C
C     Duplicate data around disc.
C
      DO 80 K = 1, HNPTS
         DWORK(IWDME+HNPTS+K-1)  = TWO*PI - DWORK(IWDME+HNPTS-K)
         DWORK(IWYMAG+HNPTS+K-1) = DWORK(IWYMAG+HNPTS-K)
   80 CONTINUE
C
C     Complex cepstrum to get min phase:
C     LOG (Magnitude)
C
      DO 90 K = 1, 2*HNPTS
         DWORK(IWYMAG+K-1) = TWO*LOG( DWORK(IWYMAG+K-1) )
   90 CONTINUE
C
C     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C     Workspace usage 2.
C     Workspace:  need  LENDAT + 6*HNPTS.
C
      IWXR = IWYMAG
      IWXI = IWMAG
C
      DO 100 K = 1, 2*HNPTS
         DWORK(IWXI+K-1) = ZERO
  100 CONTINUE
C
C     IFFT
C
      CALL DG01MD( 'I', 2*HNPTS, DWORK(IWXR), DWORK(IWXI), INFO2 )
C
C     Rescale, because DG01MD doesn't do it.
C
      CALL DSCAL( HNPTS, ONE/( TWO*HNPTS ), DWORK(IWXR), 1 )
      CALL DSCAL( HNPTS, ONE/( TWO*HNPTS ), DWORK(IWXI), 1 )
C
C     Halve the result at 0.
C
      DWORK(IWXR) = DWORK(IWXR)/TWO
      DWORK(IWXI) = DWORK(IWXI)/TWO
C
C     FFT
C
      CALL DG01MD( 'D', HNPTS, DWORK(IWXR), DWORK(IWXI), INFO2 )
C
C     Get the EXP of the result.
C
      DO 110 K = 1, HNPTS/2
         XHAT(K) = EXP( DWORK(IWXR+K-1) )*
     $         DCMPLX ( COS( DWORK(IWXI+K-1)), SIN( DWORK(IWXI+K-1) ) )
         DWORK(IWDME+K-1) = DWORK(IWDME+2*K-2)
  110 CONTINUE
C
C     Interpolate back to original frequency data.
C
      ISTART = 1
      ISTOP  = LENDAT
C
      DO 120 I = 1, LENDAT
         ZWORK(I) = ZZERO
         IF ( DWORK(IWDOMO+I-1).LE.DWORK(IWDME) ) THEN
            ZWORK(I) = XHAT(1)
            ISTART = I + 1
         ELSE IF ( DWORK(IWDOMO+I-1).GE.DWORK(IWDME+HNPTS/2-1) )
     $         THEN
            ZWORK(I) = XHAT(HNPTS/2)
            ISTOP = ISTOP - 1
         END IF
  120 CONTINUE
C
      DO 140 I = ISTART, ISTOP
         II = HNPTS/2
  130    CONTINUE
            IF ( DWORK(IWDME+II-1).GE.DWORK(IWDOMO+I-1) )
     $         P = II
            II = II - 1
         IF ( II.GT.0 )
     $      GOTO 130
         RAT = ( DWORK(IWDOMO+I-1) - DWORK(IWDME+P-2) )/
     $         ( DWORK(IWDME+P-1)  - DWORK(IWDME+P-2) )
         ZWORK(I) = RAT*XHAT(P) + ( ONE - RAT )*XHAT(P-1)
  140 CONTINUE
C
C     CASE N > 0.
C     This is the only allowed case in mu-synthesis subroutines.
C
      IF ( N.GT.0 ) THEN
C
C        Preparation for frequency identification.
C
C        @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C        Complex workspace usage 1.
C        Complex workspace:  need  2*LENDAT + LENDAT*(N+1).
C
         IWA0  = 1 + LENDAT
         IWVAR = IWA0 + LENDAT*N1
C
         DO 150 K = 1, LENDAT
            IF ( DISCFL.EQ.0 ) THEN
               ZWORK(IWVAR+K-1) = DCMPLX( COS( DWORK(IWDOMO+K-1) ),
     $                                    SIN( DWORK(IWDOMO+K-1) ) )
            ELSE
               ZWORK(IWVAR+K-1) = DCMPLX( COS( OMEGA(K) ),
     $                                    SIN( OMEGA(K) ) )
            END IF
  150    CONTINUE
C
C        Array for DGELSY.
C
         DO 160 K = 1, N2
            IWORK(K) = 0
  160    CONTINUE
C
C        Constructing A0.
C
         DO 170 K = 1, LENDAT
            ZWORK(IWA0+N*LENDAT+K-1) = ZONE
  170    CONTINUE
C
         DO 190 I = 1, N
            DO 180 K = 1, LENDAT
               ZWORK(IWA0+(N-I)*LENDAT+K-1) =
     $            ZWORK(IWA0+(N1-I)*LENDAT+K-1)*ZWORK(IWVAR+K-1)
  180       CONTINUE
  190    CONTINUE
C
C        @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C        Complex workspace usage 2.
C        Complex workspace:  need  2*LENDAT + LENDAT*(2*N+1).
C
         IWBP = IWVAR
         IWAB = IWBP + LENDAT
C
C        Constructing BP.
C
         DO 200 K = 1, LENDAT
            ZWORK(IWBP+K-1) = ZWORK(IWA0+K-1)*ZWORK(K)
  200    CONTINUE
C
C        Constructing AB.
C
         DO 220 I = 1, N
            DO 210 K = 1, LENDAT
               ZWORK(IWAB+(I-1)*LENDAT+K-1) = -ZWORK(K)*
     $             ZWORK(IWA0+I*LENDAT+K-1)
  210       CONTINUE
  220    CONTINUE
C
C        @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C        Workspace usage 3.
C        Workspace:  need  LW3 = 2*LENDAT*(2*N+1) + max(2*LENDAT,2*N+1).
C
         IWBX = 1 + 2*LENDAT*N2
         IWS  = IWBX + MAX( 2*LENDAT, N2 )
C
C        Constructing AX.
C
         DO 240 I = 1, N1
            DO 230 K = 1, LENDAT
               DWORK(2*(I-1)*LENDAT+K) =
     $            DBLE( ZWORK(IWA0+(I-1)*LENDAT+K-1) )
               DWORK((2*I-1)*LENDAT+K) =
     $            DIMAG( ZWORK(IWA0+(I-1)*LENDAT+K-1) )
  230       CONTINUE
  240    CONTINUE
C
         DO 260 I = 1, N
            DO 250 K = 1, LENDAT
               DWORK(2*N1*LENDAT+2*(I-1)*LENDAT+K) =
     $            DBLE( ZWORK(IWAB+(I-1)*LENDAT+K-1) )
               DWORK(2*N1*LENDAT+(2*I-1)*LENDAT+K) =
     $            DIMAG( ZWORK(IWAB+(I-1)*LENDAT+K-1) )
  250       CONTINUE
  260    CONTINUE
C
C        Constructing BX.
C
         DO 270 K = 1, LENDAT
            DWORK(IWBX+K-1) = DBLE( ZWORK(IWBP+K-1) )
            DWORK(IWBX+LENDAT+K-1) = DIMAG( ZWORK(IWBP+K-1) )
  270    CONTINUE
C
C        Estimating X.
C        Workspace:  need    LW3 + max( MN+3*(2*N+1)+1, 2*MN+1 ),
C                            where MN = min( 2*LENDAT, 2*N+1 );
C                            prefer  larger.
C
         CALL DGELSY( 2*LENDAT, N2, 1, DWORK, 2*LENDAT, DWORK(IWBX),
     $                MAX( 2*LENDAT, N2 ), IWORK, TOLL, RANK,
     $                DWORK(IWS), LDWORK-IWS+1, INFO2 )
         DLWMAX = MAX( DLWMAX, INT( DWORK(IWS) + IWS - 1 ) )
C
C        Constructing A matrix.
C
         DO 280 K = 1, N
            A(K,1) = -DWORK(IWBX+N1+K-1)
  280    CONTINUE
C
         IF ( N.GT.1 )
     $      CALL DLASET( 'Full', N, N-1, ZERO, ONE, A(1,2), LDA )
C
C        Constructing B matrix.
C
         DO 290 K = 1, N
            B(K) = DWORK(IWBX+N1+K-1)*DWORK(IWBX) - DWORK(IWBX+K)
  290    CONTINUE
C
C        Constructing C matrix.
C
         C(1) = -ONE
C
         DO 300 K = 2, N
            C(K) = ZERO
  300    CONTINUE
C
C        Constructing D matrix.
C
         D(1) = DWORK(IWBX)
C
C        Transform to continuous-time case, if needed.
C        Workspace:  need    max(1,N);
C                            prefer  larger.
C
         IF ( DISCFL.EQ.0 ) THEN
            CALL AB04MD( 'D', N, 1, 1, ONE, PW, A, LDA, B, LDA, C, 1,
     $                   D, 1, IWORK, DWORK, LDWORK, INFO2 )
            IF ( INFO2.NE.0 ) THEN
               INFO = 1
               RETURN
            END IF
            DLWMAX = MAX( DLWMAX, INT( DWORK(1) ) )
         END IF
C
C        Make all the real parts of the poles and the zeros negative.
C
         IF ( FLAG.EQ.1 ) THEN
C
C           Workspace:  need    max(N*N + 5*N, 6*N + 1 + min(1,N));
C                               prefer  larger.
            CALL SB10ZP( DISCFL, N, A, LDA, B, C, D, IWORK, DWORK,
     $                   LDWORK, INFO )
            IF ( INFO.NE.0 )
     $         RETURN
            DLWMAX = MAX( DLWMAX, INT( DWORK(1) ) )
         END IF
C
       ELSE
C
C        CASE N = 0.
C
C        @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C        Workspace usage 4.
C        Workspace:  need  4*LENDAT.
C
         IWBMAT = 1 + 2*LENDAT
         IWS    = IWBMAT + 2*LENDAT
C
C        Constructing AMAT and BMAT.
C
         DO 310 K = 1, LENDAT
            DWORK(K) = ONE
            DWORK(K+LENDAT) = ZERO
            DWORK(IWBMAT+K-1) = DBLE( ZWORK(K) )
            DWORK(IWBMAT+LENDAT+K-1) = DIMAG( ZWORK(K) )
  310    CONTINUE
C
C        Estimating D matrix.
C        Workspace:  need    4*LENDAT + 5;
C                            prefer  larger.
C
         IWORK(1) = 0
         CALL DGELSY( 2*LENDAT, 1, 1, DWORK, 2*LENDAT, DWORK(IWBMAT),
     $                2*LENDAT, IWORK, TOLL, RANK, DWORK(IWS),
     $                LDWORK-IWS+1, INFO2 )
         DLWMAX = MAX( DLWMAX, INT( DWORK(IWS) + IWS - 1 ) )
C
         D(1) = DWORK(IWBMAT)
C
      END IF
C
C     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
      DWORK(1) = DLWMAX
      DWORK(2) = CLWMAX
      RETURN
C
C *** Last line of SB10YD ***
      END