1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
|
SUBROUTINE SB10YD( DISCFL, FLAG, LENDAT, RFRDAT, IFRDAT, OMEGA, N,
$ A, LDA, B, C, D, TOL, IWORK, DWORK, LDWORK,
$ ZWORK, LZWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To fit a supplied frequency response data with a stable, minimum
C phase SISO (single-input single-output) system represented by its
C matrices A, B, C, D. It handles both discrete- and continuous-time
C cases.
C
C ARGUMENTS
C
C Input/Output parameters
C
C DISCFL (input) INTEGER
C Indicates the type of the system, as follows:
C = 0: continuous-time system;
C = 1: discrete-time system.
C
C FLAG (input) INTEGER
C If FLAG = 0, then the system zeros and poles are not
C constrained.
C If FLAG = 1, then the system zeros and poles will have
C negative real parts in the continuous-time case, or moduli
C less than 1 in the discrete-time case. Consequently, FLAG
C must be equal to 1 in mu-synthesis routines.
C
C LENDAT (input) INTEGER
C The length of the vectors RFRDAT, IFRDAT and OMEGA.
C LENDAT >= 2.
C
C RFRDAT (input) DOUBLE PRECISION array, dimension (LENDAT)
C The real part of the frequency data to be fitted.
C
C IFRDAT (input) DOUBLE PRECISION array, dimension (LENDAT)
C The imaginary part of the frequency data to be fitted.
C
C OMEGA (input) DOUBLE PRECISION array, dimension (LENDAT)
C The frequencies corresponding to RFRDAT and IFRDAT.
C These values must be nonnegative and monotonically
C increasing. Additionally, for discrete-time systems
C they must be between 0 and PI.
C
C N (input/output) INTEGER
C On entry, the desired order of the system to be fitted.
C N <= LENDAT-1.
C On exit, the order of the obtained system. The value of N
C could only be modified if N > 0 and FLAG = 1.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array contains the
C matrix A. If FLAG = 1, then A is in an upper Hessenberg
C form, and corresponds to a minimal realization.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C B (output) DOUBLE PRECISION array, dimension (N)
C The computed vector B.
C
C C (output) DOUBLE PRECISION array, dimension (N)
C The computed vector C. If FLAG = 1, the first N-1 elements
C are zero (for the exit value of N).
C
C D (output) DOUBLE PRECISION array, dimension (1)
C The computed scalar D.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used for determining the effective
C rank of matrices. If the user sets TOL > 0, then the given
C value of TOL is used as a lower bound for the reciprocal
C condition number; a (sub)matrix whose estimated condition
C number is less than 1/TOL is considered to be of full
C rank. If the user sets TOL <= 0, then an implicitly
C computed, default tolerance, defined by TOLDEF = SIZE*EPS,
C is used instead, where SIZE is the product of the matrix
C dimensions, and EPS is the machine precision (see LAPACK
C Library routine DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension max(2,2*N+1)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK and DWORK(2) contains the optimal value of
C LZWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK = max( 2, LW1, LW2, LW3, LW4 ), where
C LW1 = 2*LENDAT + 4*HNPTS; HNPTS = 2048;
C LW2 = LENDAT + 6*HNPTS;
C MN = min( 2*LENDAT, 2*N+1 )
C LW3 = 2*LENDAT*(2*N+1) + max( 2*LENDAT, 2*N+1 ) +
C max( MN + 6*N + 4, 2*MN + 1 ), if N > 0;
C LW3 = 4*LENDAT + 5 , if N = 0;
C LW4 = max( N*N + 5*N, 6*N + 1 + min( 1,N ) ), if FLAG = 1;
C LW4 = 0, if FLAG = 0.
C For optimum performance LDWORK should be larger.
C
C ZWORK COMPLEX*16 array, dimension (LZWORK)
C
C LZWORK INTEGER
C The length of the array ZWORK.
C LZWORK = LENDAT*(2*N+3), if N > 0;
C LZWORK = LENDAT, if N = 0.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the discrete --> continuous transformation cannot
C be made;
C = 2: if the system poles cannot be found;
C = 3: if the inverse system cannot be found, i.e., D is
C (close to) zero;
C = 4: if the system zeros cannot be found;
C = 5: if the state-space representation of the new
C transfer function T(s) cannot be found;
C = 6: if the continuous --> discrete transformation cannot
C be made.
C
C METHOD
C
C First, if the given frequency data are corresponding to a
C continuous-time system, they are changed to a discrete-time
C system using a bilinear transformation with a scaled alpha.
C Then, the magnitude is obtained from the supplied data.
C Then, the frequency data are linearly interpolated around
C the unit-disc.
C Then, Oppenheim and Schafer complex cepstrum method is applied
C to get frequency data corresponding to a stable, minimum-
C phase system. This is done in the following steps:
C - Obtain LOG (magnitude)
C - Obtain IFFT of the result (DG01MD SLICOT subroutine);
C - halve the data at 0;
C - Obtain FFT of the halved data (DG01MD SLICOT subroutine);
C - Obtain EXP of the result.
C Then, the new frequency data are interpolated back to the
C original frequency.
C Then, based on these newly obtained data, the system matrices
C A, B, C, D are constructed; the very identification is
C performed by Least Squares Method using DGELSY LAPACK subroutine.
C If needed, a discrete-to-continuous time transformation is
C applied on the system matrices by AB04MD SLICOT subroutine.
C Finally, if requested, the poles and zeros of the system are
C checked. If some of them have positive real parts in the
C continuous-time case (or are not inside the unit disk in the
C complex plane in the discrete-time case), they are exchanged with
C their negatives (or reciprocals, respectively), to preserve the
C frequency response, while getting a minimum phase and stable
C system. This is done by SB10ZP SLICOT subroutine.
C
C REFERENCES
C
C [1] Oppenheim, A.V. and Schafer, R.W.
C Discrete-Time Signal Processing.
C Prentice-Hall Signal Processing Series, 1989.
C
C [2] Balas, G., Doyle, J., Glover, K., Packard, A., and Smith, R.
C Mu-analysis and Synthesis toolbox - User's Guide,
C The Mathworks Inc., Natick, MA, USA, 1998.
C
C CONTRIBUTORS
C
C Asparuh Markovski, Technical University of Sofia, July 2003.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 2003.
C A. Markovski, Technical University of Sofia, October 2003.
C
C KEYWORDS
C
C Bilinear transformation, frequency response, least-squares
C approximation, stability.
C
C ******************************************************************
C
C .. Parameters ..
COMPLEX*16 ZZERO, ZONE
PARAMETER ( ZZERO = ( 0.0D+0, 0.0D+0 ),
$ ZONE = ( 1.0D+0, 0.0D+0 ) )
DOUBLE PRECISION ZERO, ONE, TWO, FOUR, TEN
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ FOUR = 4.0D+0, TEN = 1.0D+1 )
INTEGER HNPTS
PARAMETER ( HNPTS = 2048 )
C ..
C .. Scalar Arguments ..
INTEGER DISCFL, FLAG, INFO, LDA, LDWORK, LENDAT,
$ LZWORK, N
DOUBLE PRECISION TOL
C ..
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA, *), B(*), C(*), D(*), DWORK(*),
$ IFRDAT(*), OMEGA(*), RFRDAT(*)
COMPLEX*16 ZWORK(*)
C ..
C .. Local Scalars ..
INTEGER CLWMAX, DLWMAX, I, II, INFO2, IP1, IP2, ISTART,
$ ISTOP, IWA0, IWAB, IWBMAT, IWBP, IWBX, IWDME,
$ IWDOMO, IWMAG, IWS, IWVAR, IWXI, IWXR, IWYMAG,
$ K, LW1, LW2, LW3, LW4, MN, N1, N2, P, RANK
DOUBLE PRECISION P1, P2, PI, PW, RAT, TOLB, TOLL
COMPLEX*16 XHAT(HNPTS/2)
C ..
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY2
EXTERNAL DLAMCH, DLAPY2
C ..
C .. External Subroutines ..
EXTERNAL AB04MD, DCOPY, DG01MD, DGELSY, DLASET, DSCAL,
$ SB10ZP, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ACOS, ATAN, COS, DBLE, DCMPLX, DIMAG, EXP, LOG,
$ MAX, MIN, SIN, SQRT
C
C Test input parameters and workspace.
C
PI = FOUR*ATAN( ONE )
PW = OMEGA(1)
N1 = N + 1
N2 = N + N1
C
INFO = 0
IF( DISCFL.NE.0 .AND. DISCFL.NE.1 ) THEN
INFO = -1
ELSE IF( FLAG.NE.0 .AND. FLAG.NE.1 ) THEN
INFO = -2
ELSE IF ( LENDAT.LT.2 ) THEN
INFO = -3
ELSE IF ( PW.LT.ZERO ) THEN
INFO = -6
ELSE IF( N.GT.LENDAT - 1 ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE
C
DO 10 K = 2, LENDAT
IF ( OMEGA(K).LT.PW )
$ INFO = -6
PW = OMEGA(K)
10 CONTINUE
C
IF ( DISCFL.EQ.1 .AND. OMEGA(LENDAT).GT.PI )
$ INFO = -6
END IF
C
IF ( INFO.EQ.0 ) THEN
C
C Workspace.
C
LW1 = 2*LENDAT + 4*HNPTS
LW2 = LENDAT + 6*HNPTS
MN = MIN( 2*LENDAT, N2 )
C
IF ( N.GT.0 ) THEN
LW3 = 2*LENDAT*N2 + MAX( 2*LENDAT, N2 ) +
$ MAX( MN + 6*N + 4, 2*MN + 1 )
ELSE
LW3 = 4*LENDAT + 5
END IF
C
IF ( FLAG.EQ.0 ) THEN
LW4 = 0
ELSE
LW4 = MAX( N*N + 5*N, 6*N + 1 + MIN ( 1, N ) )
END IF
C
DLWMAX = MAX( 2, LW1, LW2, LW3, LW4 )
C
IF ( N.GT.0 ) THEN
CLWMAX = LENDAT*( N2 + 2 )
ELSE
CLWMAX = LENDAT
END IF
C
IF ( LDWORK.LT.DLWMAX ) THEN
INFO = -16
ELSE IF ( LZWORK.LT.CLWMAX ) THEN
INFO = -18
END IF
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB10YD', -INFO )
RETURN
END IF
C
C Set tolerances.
C
TOLB = DLAMCH( 'Epsilon' )
TOLL = TOL
IF ( TOLL.LE.ZERO )
$ TOLL = FOUR*DBLE( LENDAT*N )*TOLB
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C Workspace usage 1.
C Workspace: need 2*LENDAT + 4*HNPTS.
C
IWDOMO = 1
IWDME = IWDOMO + LENDAT
IWYMAG = IWDME + 2*HNPTS
IWMAG = IWYMAG + 2*HNPTS
C
C Bilinear transformation.
C
IF ( DISCFL.EQ.0 ) THEN
PW = SQRT( OMEGA(1)*OMEGA(LENDAT) + SQRT( TOLB ) )
C
DO 20 K = 1, LENDAT
DWORK(IWDME+K-1) = ( OMEGA(K)/PW )**2
DWORK(IWDOMO+K-1) =
$ ACOS( ( ONE - DWORK(IWDME+K-1) )/
$ ( ONE + DWORK(IWDME+K-1) ) )
20 CONTINUE
C
ELSE
CALL DCOPY( LENDAT, OMEGA, 1, DWORK(IWDOMO), 1 )
END IF
C
C Linear interpolation.
C
DO 30 K = 1, LENDAT
DWORK(IWMAG+K-1) = DLAPY2( RFRDAT(K), IFRDAT(K) )
DWORK(IWMAG+K-1) = ( ONE/LOG( TEN ) ) * LOG( DWORK(IWMAG+K-1) )
30 CONTINUE
C
DO 40 K = 1, HNPTS
DWORK(IWDME+K-1) = ( K - 1 )*PI/HNPTS
DWORK(IWYMAG+K-1) = ZERO
C
IF ( DWORK(IWDME+K-1).LT.DWORK(IWDOMO) ) THEN
DWORK(IWYMAG+K-1) = DWORK(IWMAG)
ELSE IF ( DWORK(IWDME+K-1).GE.DWORK(IWDOMO+LENDAT-1) ) THEN
DWORK(IWYMAG+K-1) = DWORK(IWMAG+LENDAT-1)
END IF
C
40 CONTINUE
C
DO 60 I = 2, LENDAT
P1 = HNPTS*DWORK(IWDOMO+I-2)/PI + ONE
C
IP1 = INT( P1 )
IF ( DBLE( IP1 ).NE.P1 )
$ IP1 = IP1 + 1
C
P2 = HNPTS*DWORK(IWDOMO+I-1)/PI + ONE
C
IP2 = INT( P2 )
IF ( DBLE( IP2 ).NE.P2 )
$ IP2 = IP2 + 1
C
DO 50 P = IP1, IP2 - 1
RAT = DWORK(IWDME+P-1) - DWORK(IWDOMO+I-2)
RAT = RAT/( DWORK(IWDOMO+I-1) - DWORK(IWDOMO+I-2) )
DWORK(IWYMAG+P-1) = ( ONE - RAT )*DWORK(IWMAG+I-2) +
$ RAT*DWORK(IWMAG+I-1)
50 CONTINUE
C
60 CONTINUE
C
DO 70 K = 1, HNPTS
DWORK(IWYMAG+K-1) = EXP( LOG( TEN )*DWORK(IWYMAG+K-1) )
70 CONTINUE
C
C Duplicate data around disc.
C
DO 80 K = 1, HNPTS
DWORK(IWDME+HNPTS+K-1) = TWO*PI - DWORK(IWDME+HNPTS-K)
DWORK(IWYMAG+HNPTS+K-1) = DWORK(IWYMAG+HNPTS-K)
80 CONTINUE
C
C Complex cepstrum to get min phase:
C LOG (Magnitude)
C
DO 90 K = 1, 2*HNPTS
DWORK(IWYMAG+K-1) = TWO*LOG( DWORK(IWYMAG+K-1) )
90 CONTINUE
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C Workspace usage 2.
C Workspace: need LENDAT + 6*HNPTS.
C
IWXR = IWYMAG
IWXI = IWMAG
C
DO 100 K = 1, 2*HNPTS
DWORK(IWXI+K-1) = ZERO
100 CONTINUE
C
C IFFT
C
CALL DG01MD( 'I', 2*HNPTS, DWORK(IWXR), DWORK(IWXI), INFO2 )
C
C Rescale, because DG01MD doesn't do it.
C
CALL DSCAL( HNPTS, ONE/( TWO*HNPTS ), DWORK(IWXR), 1 )
CALL DSCAL( HNPTS, ONE/( TWO*HNPTS ), DWORK(IWXI), 1 )
C
C Halve the result at 0.
C
DWORK(IWXR) = DWORK(IWXR)/TWO
DWORK(IWXI) = DWORK(IWXI)/TWO
C
C FFT
C
CALL DG01MD( 'D', HNPTS, DWORK(IWXR), DWORK(IWXI), INFO2 )
C
C Get the EXP of the result.
C
DO 110 K = 1, HNPTS/2
XHAT(K) = EXP( DWORK(IWXR+K-1) )*
$ DCMPLX ( COS( DWORK(IWXI+K-1)), SIN( DWORK(IWXI+K-1) ) )
DWORK(IWDME+K-1) = DWORK(IWDME+2*K-2)
110 CONTINUE
C
C Interpolate back to original frequency data.
C
ISTART = 1
ISTOP = LENDAT
C
DO 120 I = 1, LENDAT
ZWORK(I) = ZZERO
IF ( DWORK(IWDOMO+I-1).LE.DWORK(IWDME) ) THEN
ZWORK(I) = XHAT(1)
ISTART = I + 1
ELSE IF ( DWORK(IWDOMO+I-1).GE.DWORK(IWDME+HNPTS/2-1) )
$ THEN
ZWORK(I) = XHAT(HNPTS/2)
ISTOP = ISTOP - 1
END IF
120 CONTINUE
C
DO 140 I = ISTART, ISTOP
II = HNPTS/2
130 CONTINUE
IF ( DWORK(IWDME+II-1).GE.DWORK(IWDOMO+I-1) )
$ P = II
II = II - 1
IF ( II.GT.0 )
$ GOTO 130
RAT = ( DWORK(IWDOMO+I-1) - DWORK(IWDME+P-2) )/
$ ( DWORK(IWDME+P-1) - DWORK(IWDME+P-2) )
ZWORK(I) = RAT*XHAT(P) + ( ONE - RAT )*XHAT(P-1)
140 CONTINUE
C
C CASE N > 0.
C This is the only allowed case in mu-synthesis subroutines.
C
IF ( N.GT.0 ) THEN
C
C Preparation for frequency identification.
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C Complex workspace usage 1.
C Complex workspace: need 2*LENDAT + LENDAT*(N+1).
C
IWA0 = 1 + LENDAT
IWVAR = IWA0 + LENDAT*N1
C
DO 150 K = 1, LENDAT
IF ( DISCFL.EQ.0 ) THEN
ZWORK(IWVAR+K-1) = DCMPLX( COS( DWORK(IWDOMO+K-1) ),
$ SIN( DWORK(IWDOMO+K-1) ) )
ELSE
ZWORK(IWVAR+K-1) = DCMPLX( COS( OMEGA(K) ),
$ SIN( OMEGA(K) ) )
END IF
150 CONTINUE
C
C Array for DGELSY.
C
DO 160 K = 1, N2
IWORK(K) = 0
160 CONTINUE
C
C Constructing A0.
C
DO 170 K = 1, LENDAT
ZWORK(IWA0+N*LENDAT+K-1) = ZONE
170 CONTINUE
C
DO 190 I = 1, N
DO 180 K = 1, LENDAT
ZWORK(IWA0+(N-I)*LENDAT+K-1) =
$ ZWORK(IWA0+(N1-I)*LENDAT+K-1)*ZWORK(IWVAR+K-1)
180 CONTINUE
190 CONTINUE
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C Complex workspace usage 2.
C Complex workspace: need 2*LENDAT + LENDAT*(2*N+1).
C
IWBP = IWVAR
IWAB = IWBP + LENDAT
C
C Constructing BP.
C
DO 200 K = 1, LENDAT
ZWORK(IWBP+K-1) = ZWORK(IWA0+K-1)*ZWORK(K)
200 CONTINUE
C
C Constructing AB.
C
DO 220 I = 1, N
DO 210 K = 1, LENDAT
ZWORK(IWAB+(I-1)*LENDAT+K-1) = -ZWORK(K)*
$ ZWORK(IWA0+I*LENDAT+K-1)
210 CONTINUE
220 CONTINUE
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C Workspace usage 3.
C Workspace: need LW3 = 2*LENDAT*(2*N+1) + max(2*LENDAT,2*N+1).
C
IWBX = 1 + 2*LENDAT*N2
IWS = IWBX + MAX( 2*LENDAT, N2 )
C
C Constructing AX.
C
DO 240 I = 1, N1
DO 230 K = 1, LENDAT
DWORK(2*(I-1)*LENDAT+K) =
$ DBLE( ZWORK(IWA0+(I-1)*LENDAT+K-1) )
DWORK((2*I-1)*LENDAT+K) =
$ DIMAG( ZWORK(IWA0+(I-1)*LENDAT+K-1) )
230 CONTINUE
240 CONTINUE
C
DO 260 I = 1, N
DO 250 K = 1, LENDAT
DWORK(2*N1*LENDAT+2*(I-1)*LENDAT+K) =
$ DBLE( ZWORK(IWAB+(I-1)*LENDAT+K-1) )
DWORK(2*N1*LENDAT+(2*I-1)*LENDAT+K) =
$ DIMAG( ZWORK(IWAB+(I-1)*LENDAT+K-1) )
250 CONTINUE
260 CONTINUE
C
C Constructing BX.
C
DO 270 K = 1, LENDAT
DWORK(IWBX+K-1) = DBLE( ZWORK(IWBP+K-1) )
DWORK(IWBX+LENDAT+K-1) = DIMAG( ZWORK(IWBP+K-1) )
270 CONTINUE
C
C Estimating X.
C Workspace: need LW3 + max( MN+3*(2*N+1)+1, 2*MN+1 ),
C where MN = min( 2*LENDAT, 2*N+1 );
C prefer larger.
C
CALL DGELSY( 2*LENDAT, N2, 1, DWORK, 2*LENDAT, DWORK(IWBX),
$ MAX( 2*LENDAT, N2 ), IWORK, TOLL, RANK,
$ DWORK(IWS), LDWORK-IWS+1, INFO2 )
DLWMAX = MAX( DLWMAX, INT( DWORK(IWS) + IWS - 1 ) )
C
C Constructing A matrix.
C
DO 280 K = 1, N
A(K,1) = -DWORK(IWBX+N1+K-1)
280 CONTINUE
C
IF ( N.GT.1 )
$ CALL DLASET( 'Full', N, N-1, ZERO, ONE, A(1,2), LDA )
C
C Constructing B matrix.
C
DO 290 K = 1, N
B(K) = DWORK(IWBX+N1+K-1)*DWORK(IWBX) - DWORK(IWBX+K)
290 CONTINUE
C
C Constructing C matrix.
C
C(1) = -ONE
C
DO 300 K = 2, N
C(K) = ZERO
300 CONTINUE
C
C Constructing D matrix.
C
D(1) = DWORK(IWBX)
C
C Transform to continuous-time case, if needed.
C Workspace: need max(1,N);
C prefer larger.
C
IF ( DISCFL.EQ.0 ) THEN
CALL AB04MD( 'D', N, 1, 1, ONE, PW, A, LDA, B, LDA, C, 1,
$ D, 1, IWORK, DWORK, LDWORK, INFO2 )
IF ( INFO2.NE.0 ) THEN
INFO = 1
RETURN
END IF
DLWMAX = MAX( DLWMAX, INT( DWORK(1) ) )
END IF
C
C Make all the real parts of the poles and the zeros negative.
C
IF ( FLAG.EQ.1 ) THEN
C
C Workspace: need max(N*N + 5*N, 6*N + 1 + min(1,N));
C prefer larger.
CALL SB10ZP( DISCFL, N, A, LDA, B, C, D, IWORK, DWORK,
$ LDWORK, INFO )
IF ( INFO.NE.0 )
$ RETURN
DLWMAX = MAX( DLWMAX, INT( DWORK(1) ) )
END IF
C
ELSE
C
C CASE N = 0.
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C Workspace usage 4.
C Workspace: need 4*LENDAT.
C
IWBMAT = 1 + 2*LENDAT
IWS = IWBMAT + 2*LENDAT
C
C Constructing AMAT and BMAT.
C
DO 310 K = 1, LENDAT
DWORK(K) = ONE
DWORK(K+LENDAT) = ZERO
DWORK(IWBMAT+K-1) = DBLE( ZWORK(K) )
DWORK(IWBMAT+LENDAT+K-1) = DIMAG( ZWORK(K) )
310 CONTINUE
C
C Estimating D matrix.
C Workspace: need 4*LENDAT + 5;
C prefer larger.
C
IWORK(1) = 0
CALL DGELSY( 2*LENDAT, 1, 1, DWORK, 2*LENDAT, DWORK(IWBMAT),
$ 2*LENDAT, IWORK, TOLL, RANK, DWORK(IWS),
$ LDWORK-IWS+1, INFO2 )
DLWMAX = MAX( DLWMAX, INT( DWORK(IWS) + IWS - 1 ) )
C
D(1) = DWORK(IWBMAT)
C
END IF
C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
DWORK(1) = DLWMAX
DWORK(2) = CLWMAX
RETURN
C
C *** Last line of SB10YD ***
END
|