1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
SUBROUTINE SB10ZD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
$ FACTOR, AK, LDAK, BK, LDBK, CK, LDCK, DK,
$ LDDK, RCOND, TOL, IWORK, DWORK, LDWORK, BWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrices of the positive feedback controller
C
C | Ak | Bk |
C K = |----|----|
C | Ck | Dk |
C
C for the shaped plant
C
C | A | B |
C G = |---|---|
C | C | D |
C
C in the Discrete-Time Loop Shaping Design Procedure.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the plant. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A of the shaped plant.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B of the shaped plant.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C of the shaped plant.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading NP-by-M part of this array must contain the
C system input/output matrix D of the shaped plant.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= max(1,NP).
C
C FACTOR (input) DOUBLE PRECISION
C = 1 implies that an optimal controller is required
C (not recommended);
C > 1 implies that a suboptimal controller is required
C achieving a performance FACTOR less than optimal.
C FACTOR >= 1.
C
C AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
C The leading N-by-N part of this array contains the
C controller state matrix Ak.
C
C LDAK INTEGER
C The leading dimension of the array AK. LDAK >= max(1,N).
C
C BK (output) DOUBLE PRECISION array, dimension (LDBK,NP)
C The leading N-by-NP part of this array contains the
C controller input matrix Bk.
C
C LDBK INTEGER
C The leading dimension of the array BK. LDBK >= max(1,N).
C
C CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
C The leading M-by-N part of this array contains the
C controller output matrix Ck.
C
C LDCK INTEGER
C The leading dimension of the array CK. LDCK >= max(1,M).
C
C DK (output) DOUBLE PRECISION array, dimension (LDDK,NP)
C The leading M-by-NP part of this array contains the
C controller matrix Dk.
C
C LDDK INTEGER
C The leading dimension of the array DK. LDDK >= max(1,M).
C
C RCOND (output) DOUBLE PRECISION array, dimension (6)
C RCOND(1) contains an estimate of the reciprocal condition
C number of the linear system of equations from
C which the solution of the P-Riccati equation is
C obtained;
C RCOND(2) contains an estimate of the reciprocal condition
C number of the linear system of equations from
C which the solution of the Q-Riccati equation is
C obtained;
C RCOND(3) contains an estimate of the reciprocal condition
C number of the matrix (gamma^2-1)*In - P*Q;
C RCOND(4) contains an estimate of the reciprocal condition
C number of the matrix Rx + Bx'*X*Bx;
C RCOND(5) contains an estimate of the reciprocal condition
C ^
C number of the matrix Ip + D*Dk;
C RCOND(6) contains an estimate of the reciprocal condition
C ^
C number of the matrix Im + Dk*D.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C Tolerance used for checking the nonsingularity of the
C matrices to be inverted. If TOL <= 0, then a default value
C equal to sqrt(EPS) is used, where EPS is the relative
C machine precision. TOL < 1.
C
C Workspace
C
C IWORK INTEGER array, dimension 2*max(N,M+NP)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= 16*N*N + 5*M*M + 7*NP*NP + 6*M*N + 7*M*NP +
C 7*N*NP + 6*N + 2*(M + NP) +
C max(14*N+23,16*N,2*M-1,2*NP-1).
C For good performance, LDWORK must generally be larger.
C
C BWORK LOGICAL array, dimension (2*N)
C
C Error Indicator
C
C INFO (output) INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the P-Riccati equation is not solved successfully;
C = 2: the Q-Riccati equation is not solved successfully;
C = 3: the iteration to compute eigenvalues or singular
C values failed to converge;
C = 4: the matrix (gamma^2-1)*In - P*Q is singular;
C = 5: the matrix Rx + Bx'*X*Bx is singular;
C ^
C = 6: the matrix Ip + D*Dk is singular;
C ^
C = 7: the matrix Im + Dk*D is singular;
C = 8: the matrix Ip - D*Dk is singular;
C = 9: the matrix Im - Dk*D is singular;
C = 10: the closed-loop system is unstable.
C
C METHOD
C
C The routine implements the formulas given in [1].
C
C REFERENCES
C
C [1] Gu, D.-W., Petkov, P.H., and Konstantinov, M.M.
C On discrete H-infinity loop shaping design procedure routines.
C Technical Report 00-6, Dept. of Engineering, Univ. of
C Leicester, UK, 2000.
C
C NUMERICAL ASPECTS
C
C The accuracy of the results depends on the conditioning of the
C two Riccati equations solved in the controller design. For
C better conditioning it is advised to take FACTOR > 1.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, May 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, July 2001.
C
C KEYWORDS
C
C H_infinity control, Loop-shaping design, Robust control.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDWORK, M, N, NP
DOUBLE PRECISION FACTOR, TOL
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
LOGICAL BWORK( * )
DOUBLE PRECISION A ( LDA, * ), AK( LDAK, * ), B ( LDB, * ),
$ BK( LDBK, * ), C ( LDC, * ), CK( LDCK, * ),
$ D ( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ RCOND( 6 )
C ..
C .. Local Scalars ..
INTEGER I, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10,
$ I11, I12, I13, I14, I15, I16, I17, I18, I19,
$ I20, I21, I22, I23, I24, I25, I26, INFO2, IWRK,
$ J, LWAMAX, MINWRK, N2, NS, SDIM
DOUBLE PRECISION ANORM, GAMMA, TOLL
C ..
C .. External Functions ..
LOGICAL SELECT
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY, DLAPY2
EXTERNAL DLAMCH, DLANGE, DLANSY, DLAPY2, SELECT
C ..
C .. External Subroutines ..
EXTERNAL DCOPY, DGECON, DGEES, DGEMM, DGETRF, DGETRS,
$ DLACPY, DLASCL, DLASET, DPOTRF, DPOTRS, DSWAP,
$ DSYCON, DSYEV, DSYRK, DSYTRF, DSYTRS, DTRSM,
$ DTRTRS, MA02AD, MB01RX, MB02VD, SB02OD, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, SQRT
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( NP.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -9
ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
INFO = -11
ELSE IF( FACTOR.LT.ONE ) THEN
INFO = -12
ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDCK.LT.MAX( 1, M ) ) THEN
INFO = -18
ELSE IF( LDDK.LT.MAX( 1, M ) ) THEN
INFO = -20
ELSE IF( TOL.GE.ONE ) THEN
INFO = -22
END IF
C
C Compute workspace.
C
MINWRK = 16*N*N + 5*M*M + 7*NP*NP + 6*M*N + 7*M*NP + 7*N*NP +
$ 6*N + 2*(M + NP) + MAX( 14*N+23, 16*N, 2*M-1, 2*NP-1 )
IF( LDWORK.LT.MINWRK ) THEN
INFO = -25
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB10ZD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C Note that some computation could be made if one or two of the
C dimension parameters N, M, and P are zero, but the results are
C not so meaningful.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 ) THEN
RCOND( 1 ) = ONE
RCOND( 2 ) = ONE
RCOND( 3 ) = ONE
RCOND( 4 ) = ONE
RCOND( 5 ) = ONE
RCOND( 6 ) = ONE
DWORK( 1 ) = ONE
RETURN
END IF
C
C Set the default tolerance, if needed.
C
IF( TOL.LE.ZERO ) THEN
TOLL = SQRT( DLAMCH( 'Epsilon' ) )
ELSE
TOLL = TOL
END IF
C
C Workspace usage.
C
N2 = 2*N
I1 = 1 + N*N
I2 = I1 + N*N
I3 = I2 + NP*NP
I4 = I3 + M*M
I5 = I4 + NP*NP
I6 = I5 + M*M
I7 = I6 + M*N
I8 = I7 + M*N
I9 = I8 + N*N
I10 = I9 + N*N
I11 = I10 + N2
I12 = I11 + N2
I13 = I12 + N2
I14 = I13 + N2*N2
I15 = I14 + N2*N2
C
IWRK = I15 + N2*N2
LWAMAX = 0
C
C Compute R1 = Ip + D*D' .
C
CALL DLASET( 'U', NP, NP, ZERO, ONE, DWORK( I2 ), NP )
CALL DSYRK( 'U', 'N', NP, M, ONE, D, LDD, ONE, DWORK( I2 ), NP )
CALL DLACPY( 'U', NP, NP, DWORK( I2 ), NP, DWORK( I4 ), NP )
C
C Factorize R1 = R'*R .
C
CALL DPOTRF( 'U', NP, DWORK( I4 ), NP, INFO2 )
C -1
C Compute C'*R in BK .
C
CALL MA02AD( 'F', NP, N, C, LDC, BK, LDBK )
CALL DTRSM( 'R', 'U', 'N', 'N', N, NP, ONE, DWORK( I4 ), NP, BK,
$ LDBK )
C
C Compute R2 = Im + D'*D .
C
CALL DLASET( 'U', M, M, ZERO, ONE, DWORK( I3 ), M )
CALL DSYRK( 'U', 'T', M, NP, ONE, D, LDD, ONE, DWORK( I3 ), M )
CALL DLACPY( 'U', M, M, DWORK( I3 ), M, DWORK( I5 ), M )
C
C Factorize R2 = U'*U .
C
CALL DPOTRF( 'U', M, DWORK( I5 ), M, INFO2 )
C -1
C Compute (U )'*B' .
C
CALL MA02AD( 'F', N, M, B, LDB, DWORK( I6 ), M )
CALL DTRTRS( 'U', 'T', 'N', M, N, DWORK( I5 ), M, DWORK( I6 ), M,
$ INFO2 )
C
C Compute D'*C .
C
CALL DGEMM( 'T', 'N', M, N, NP, ONE, D, LDD, C, LDC, ZERO,
$ DWORK( I7 ), M )
C -1
C Compute (U )'*D'*C .
C
CALL DTRTRS( 'U', 'T', 'N', M, N, DWORK( I5 ), M, DWORK( I7 ), M,
$ INFO2 )
C -1
C Compute Ar = A - B*R2 D'*C .
C
CALL DLACPY( 'F', N, N, A, LDA, DWORK( I8 ), N )
CALL DGEMM( 'T', 'N', N, N, M, -ONE, DWORK( I6 ), M, DWORK( I7 ),
$ M, ONE, DWORK( I8 ), N )
C -1
C Compute Cr = C'*R1 *C .
C
CALL DSYRK( 'U', 'N', N, NP, ONE, BK, LDBK, ZERO, DWORK( I9 ), N )
C -1
C Compute Dr = B*R2 B' in AK .
C
CALL DSYRK( 'U', 'T', N, M, ONE, DWORK( I6 ), M, ZERO, AK, LDAK )
C -1
C Solution of the Riccati equation Ar'*P*(In + Dr*P) Ar - P +
C Cr = 0 .
CALL SB02OD( 'D', 'G', 'N', 'U', 'Z', 'S', N, M, NP, DWORK( I8 ),
$ N, AK, LDAK, DWORK( I9 ), N, DWORK, M, DWORK, N,
$ RCOND( 1 ), DWORK, N, DWORK( I10 ), DWORK( I11 ),
$ DWORK( I12 ), DWORK( I13 ), N2, DWORK( I14 ), N2,
$ DWORK( I15 ), N2, -ONE, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 1
RETURN
END IF
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
C
C Transpose Ar .
C
DO 10 J = 1, N - 1
CALL DSWAP( J, DWORK( I8+J ), N, DWORK( I8+J*N ), 1 )
10 CONTINUE
C -1
C Solution of the Riccati equation Ar*Q*(In + Cr*Q) *Ar' - Q +
C Dr = 0 .
CALL SB02OD( 'D', 'G', 'N', 'U', 'Z', 'S', N, M, NP, DWORK( I8 ),
$ N, DWORK( I9 ), N, AK, LDAK, DWORK, M, DWORK, N,
$ RCOND( 2 ), DWORK( I1 ), N, DWORK( I10 ),
$ DWORK( I11 ), DWORK( I12 ), DWORK( I13 ), N2,
$ DWORK( I14 ), N2, DWORK( I15 ), N2, -ONE, IWORK,
$ DWORK( IWRK ), LDWORK-IWRK+1, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 2
RETURN
END IF
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
C
C Compute gamma.
C
CALL DGEMM( 'N', 'N', N, N, N, ONE, DWORK( I1 ), N, DWORK, N,
$ ZERO, DWORK( I8 ), N )
CALL DGEES( 'N', 'N', SELECT, N, DWORK( I8 ), N, SDIM,
$ DWORK( I10 ), DWORK( I11 ), DWORK( IWRK ), N,
$ DWORK( IWRK ), LDWORK-IWRK+1, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 3
RETURN
END IF
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
GAMMA = ZERO
C
DO 20 I = 0, N - 1
GAMMA = MAX( GAMMA, DWORK( I10+I ) )
20 CONTINUE
C
GAMMA = FACTOR*SQRT( ONE + GAMMA )
C
C Workspace usage.
C
I5 = I4 + NP*NP
I6 = I5 + M*M
I7 = I6 + NP*NP
I8 = I7 + NP*NP
I9 = I8 + NP*NP
I10 = I9 + NP
I11 = I10 + NP*NP
I12 = I11 + M*M
I13 = I12 + M
C
IWRK = I13 + M*M
C
C Compute the eigenvalues and eigenvectors of R1 .
C
CALL DLACPY( 'U', NP, NP, DWORK( I2 ), NP, DWORK( I8 ), NP )
CALL DSYEV( 'V', 'U', NP, DWORK( I8 ), NP, DWORK( I9 ),
$ DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 3
RETURN
END IF
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
C -1/2
C Compute R1 .
C
DO 40 J = 1, NP
DO 30 I = 1, NP
DWORK( I10-1+I+(J-1)*NP ) = DWORK( I8-1+J+(I-1)*NP ) /
$ SQRT( DWORK( I9+I-1 ) )
30 CONTINUE
40 CONTINUE
C
CALL DGEMM( 'N', 'N', NP, NP, NP, ONE, DWORK( I8 ), NP,
$ DWORK( I10 ), NP, ZERO, DWORK( I4 ), NP )
C
C Compute the eigenvalues and eigenvectors of R2 .
C
CALL DLACPY( 'U', M, M, DWORK( I3 ), M, DWORK( I11 ), M )
CALL DSYEV( 'V', 'U', M, DWORK( I11 ), M, DWORK( I12 ),
$ DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 3
RETURN
END IF
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
C -1/2
C Compute R2 .
C
DO 60 J = 1, M
DO 50 I = 1, M
DWORK( I13-1+I+(J-1)*M ) = DWORK( I11-1+J+(I-1)*M ) /
$ SQRT( DWORK( I12+I-1 ) )
50 CONTINUE
60 CONTINUE
C
CALL DGEMM( 'N', 'N', M, M, M, ONE, DWORK( I11 ), M, DWORK( I13 ),
$ M, ZERO, DWORK( I5 ), M )
C
C Compute R1 + C*Q*C' .
C
CALL DGEMM( 'N', 'T', N, NP, N, ONE, DWORK( I1 ), N, C, LDC,
$ ZERO, BK, LDBK )
CALL MB01RX( 'L', 'U', 'N', NP, N, ONE, ONE, DWORK( I2 ), NP,
$ C, LDC, BK, LDBK, INFO2 )
CALL DLACPY( 'U', NP, NP, DWORK( I2 ), NP, DWORK( I8 ), NP )
C
C Compute the eigenvalues and eigenvectors of R1 + C*Q*C' .
C
CALL DSYEV( 'V', 'U', NP, DWORK( I8 ), NP, DWORK( I9 ),
$ DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 3
RETURN
END IF
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
C -1
C Compute ( R1 + C*Q*C' ) .
C
DO 80 J = 1, NP
DO 70 I = 1, NP
DWORK( I10-1+I+(J-1)*NP ) = DWORK( I8-1+J+(I-1)*NP ) /
$ DWORK( I9+I-1 )
70 CONTINUE
80 CONTINUE
C
CALL DGEMM( 'N', 'N', NP, NP, NP, ONE, DWORK( I8 ), NP,
$ DWORK( I10 ), NP, ZERO, DWORK( I6 ), NP )
C -1
C Compute Z2 .
C
DO 100 J = 1, NP
DO 90 I = 1, NP
DWORK( I10-1+I+(J-1)*NP ) = DWORK( I8-1+J+(I-1)*NP )*
$ SQRT( DWORK( I9+I-1 ) )
90 CONTINUE
100 CONTINUE
C
CALL DGEMM( 'N', 'N', NP, NP, NP, ONE, DWORK( I8 ), NP,
$ DWORK( I10 ), NP, ZERO, DWORK( I7 ), NP )
C
C Workspace usage.
C
I9 = I8 + N*NP
I10 = I9 + N*NP
I11 = I10 + NP*M
I12 = I11 + ( NP + M )*( NP + M )
I13 = I12 + N*( NP + M )
I14 = I13 + N*( NP + M )
I15 = I14 + N*N
I16 = I15 + N*N
I17 = I16 + ( NP + M )*N
I18 = I17 + ( NP + M )*( NP + M )
I19 = I18 + ( NP + M )*N
I20 = I19 + M*N
I21 = I20 + M*NP
I22 = I21 + NP*N
I23 = I22 + N*N
I24 = I23 + N*NP
I25 = I24 + NP*NP
I26 = I25 + M*M
C
IWRK = I26 + N*M
C
C Compute A*Q*C' + B*D' .
C
CALL DGEMM( 'N', 'T', N, NP, M, ONE, B, LDB, D, LDD, ZERO,
$ DWORK( I8 ), N )
CALL DGEMM( 'N', 'N', N, NP, N, ONE, A, LDA, BK, LDBK,
$ ONE, DWORK( I8 ), N )
C -1
C Compute H = -( A*Q*C'+B*D' )*( R1 + C*Q*C' ) .
C
CALL DGEMM( 'N', 'N', N, NP, NP, -ONE, DWORK( I8 ), N,
$ DWORK( I6 ), NP, ZERO, DWORK( I9 ), N )
C -1/2
C Compute R1 D .
C
CALL DGEMM( 'N', 'N', NP, M, NP, ONE, DWORK( I4 ), NP, D, LDD,
$ ZERO, DWORK( I10 ), NP )
C
C Compute Rx .
C
DO 110 J = 1, NP
CALL DCOPY( J, DWORK( I2+(J-1)*NP ), 1,
$ DWORK( I11+(J-1)*(NP+M) ), 1 )
DWORK( I11-1+J+(J-1)*(NP+M) ) = DWORK( I2-1+J+(J-1)*NP ) -
$ GAMMA*GAMMA
110 CONTINUE
C
CALL DGEMM( 'N', 'N', NP, M, NP, ONE, DWORK( I7 ), NP,
$ DWORK( I10 ), NP, ZERO, DWORK( I11+(NP+M)*NP ),
$ NP+M )
CALL DLASET( 'U', M, M, ZERO, ONE, DWORK( I11+(NP+M)*NP+NP ),
$ NP+M )
C
C Compute Bx .
C
CALL DGEMM( 'N', 'N', N, NP, NP, -ONE, DWORK( I9 ), N,
$ DWORK( I7 ), NP, ZERO, DWORK( I12 ), N )
CALL DGEMM( 'N', 'N', N, M, M, ONE, B, LDB, DWORK( I5 ), M,
$ ZERO, DWORK( I12+N*NP ), N )
C
C Compute Sx .
C
CALL DGEMM( 'T', 'N', N, NP, NP, ONE, C, LDC, DWORK( I7 ), NP,
$ ZERO, DWORK( I13 ), N )
CALL DGEMM( 'T', 'N', N, M, NP, ONE, C, LDC, DWORK( I10 ), NP,
$ ZERO, DWORK( I13+N*NP ), N )
C
C Compute (gamma^2 - 1)*In - P*Q .
C
CALL DLASET( 'F', N, N, ZERO, GAMMA*GAMMA-ONE, DWORK( I14 ), N )
CALL DGEMM( 'N', 'N', N, N, N, -ONE, DWORK, N, DWORK( I1 ), N,
$ ONE, DWORK( I14 ), N )
C -1
C Compute X = ((gamma^2 - 1)*In - P*Q) *gamma^2*P .
C
CALL DLACPY( 'F', N, N, DWORK, N, DWORK( I15 ), N )
CALL DLASCL( 'G', 0, 0, ONE, GAMMA*GAMMA, N, N, DWORK( I15 ), N,
$ INFO )
ANORM = DLANGE( '1', N, N, DWORK( I14 ), N, DWORK( IWRK ) )
CALL DGETRF( N, N, DWORK( I14 ), N, IWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 4
RETURN
END IF
CALL DGECON( '1', N, DWORK( I14 ), N, ANORM, RCOND( 3 ),
$ DWORK( IWRK ), IWORK( N+1 ), INFO2 )
C
C Return if the matrix is singular to working precision.
C
IF( RCOND( 3 ).LT.TOLL ) THEN
INFO = 4
RETURN
END IF
CALL DGETRS( 'N', N, N, DWORK( I14 ), N, IWORK, DWORK( I15 ),
$ N, INFO2 )
C
C Compute Bx'*X .
C
CALL DGEMM( 'T', 'N', NP+M, N, N, ONE, DWORK( I12 ), N,
$ DWORK( I15 ), N, ZERO, DWORK( I16 ), NP+M )
C
C Compute Rx + Bx'*X*Bx .
C
CALL DLACPY( 'U', NP+M, NP+M, DWORK( I11 ), NP+M, DWORK( I17 ),
$ NP+M )
CALL MB01RX( 'L', 'U', 'N', NP+M, N, ONE, ONE, DWORK( I17 ), NP+M,
$ DWORK( I16 ), NP+M, DWORK( I12 ), N, INFO2 )
C
C Compute -( Sx' + Bx'*X*A ) .
C
CALL MA02AD( 'F', N, NP+M, DWORK( I13 ), N, DWORK( I18 ), NP+M )
CALL DGEMM( 'N', 'N', NP+M, N, N, -ONE, DWORK( I16 ), NP+M,
$ A, LDA, -ONE, DWORK( I18 ), NP+M )
C
C Factorize Rx + Bx'*X*Bx .
C
ANORM = DLANSY( '1', 'U', NP+M, DWORK( I17 ), NP+M,
$ DWORK( IWRK ) )
CALL DSYTRF( 'U', NP+M, DWORK( I17 ), NP+M, IWORK,
$ DWORK( IWRK ), LDWORK-IWRK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 5
RETURN
END IF
CALL DSYCON( 'U', NP+M, DWORK( I17 ), NP+M, IWORK, ANORM,
$ RCOND( 4 ), DWORK( IWRK ), IWORK( NP+M+1), INFO2 )
C
C Return if the matrix is singular to working precision.
C
IF( RCOND( 4 ).LT.TOLL ) THEN
INFO = 5
RETURN
END IF
C -1
C Compute F = -( Rx + Bx'*X*Bx ) ( Sx' + Bx'*X*A ) .
C
CALL DSYTRS( 'U', NP+M, N, DWORK( I17 ), NP+M, IWORK,
$ DWORK( I18 ), NP+M, INFO2 )
C
C Compute B'*X .
C
CALL DGEMM( 'T', 'N', M, N, N, ONE, B, LDB, DWORK( I15 ), N,
$ ZERO, DWORK( I19 ), M )
C
C Compute -( D' - B'*X*H ) .
C
DO 130 J = 1, NP
DO 120 I = 1, M
DWORK( I20-1+I+(J-1)*M ) = -D( J, I )
120 CONTINUE
130 CONTINUE
C
CALL DGEMM( 'N', 'N', M, NP, N, ONE, DWORK( I19 ), M,
$ DWORK( I9 ), N, ONE, DWORK( I20 ), M )
C -1
C Compute C + Z2 *F1 .
C
CALL DLACPY( 'F', NP, N, C, LDC, DWORK( I21 ), NP )
CALL DGEMM( 'N', 'N', NP, N, NP, ONE, DWORK( I7 ), NP,
$ DWORK( I18 ), NP+M, ONE, DWORK( I21 ), NP )
C
C Compute R2 + B'*X*B .
C
CALL MB01RX( 'L', 'U', 'N', M, N, ONE, ONE, DWORK( I3 ), M,
$ DWORK( I19 ), M, B, LDB, INFO2 )
C
C Factorize R2 + B'*X*B .
C
CALL DPOTRF( 'U', M, DWORK( I3 ), M, INFO2 )
C ^ -1
C Compute Dk = -( R2 + B'*X*B ) (D' - B'*X*H) .
C
CALL DLACPY( 'F', M, NP, DWORK( I20 ), M, DK, LDDK )
CALL DPOTRS( 'U', M, NP, DWORK( I3 ), M, DK, LDDK, INFO2 )
C ^ ^
C Compute Bk = -H + B*Dk .
C
CALL DLACPY( 'F', N, NP, DWORK( I9 ), N, DWORK( I23 ), N )
CALL DGEMM( 'N', 'N', N, NP, M, ONE, B, LDB, DK, LDDK,
$ -ONE, DWORK( I23 ), N )
C -1/2
C Compute R2 *F2 .
C
CALL DGEMM( 'N', 'N', M, N, M, ONE, DWORK( I5 ), M,
$ DWORK( I18+NP ), NP+M, ZERO, CK, LDCK )
C ^ -1/2 ^ -1
C Compute Ck = R2 *F2 - Dk*( C + Z2 *F1 ) .
C
CALL DGEMM( 'N', 'N', M, N, NP, -ONE, DK, LDDK,
$ DWORK( I21 ), NP, ONE, CK, LDCK )
C ^ ^
C Compute Ak = A + H*C + B*Ck .
C
CALL DLACPY( 'F', N, N, A, LDA, AK, LDAK )
CALL DGEMM( 'N', 'N', N, N, NP, ONE, DWORK( I9 ), N, C, LDC,
$ ONE, AK, LDAK )
CALL DGEMM( 'N', 'N', N, N, M, ONE, B, LDB, CK, LDCK,
$ ONE, AK, LDAK )
C ^
C Compute Ip + D*Dk .
C
CALL DLASET( 'Full', NP, NP, ZERO, ONE, DWORK( I24 ), NP )
CALL DGEMM( 'N', 'N', NP, NP, M, ONE, D, LDD, DK, LDDK,
$ ONE, DWORK( I24 ), NP )
C ^
C Compute Im + Dk*D .
C
CALL DLASET( 'Full', M, M, ZERO, ONE, DWORK( I25 ), M )
CALL DGEMM( 'N', 'N', M, M, NP, ONE, DK, LDDK, D, LDD,
$ ONE, DWORK( I25 ), M )
C ^ ^ ^ ^ -1
C Compute Ck = M*Ck, M = (Im + Dk*D) .
C
ANORM = DLANGE( '1', M, M, DWORK( I25 ), M, DWORK( IWRK ) )
CALL DGETRF( M, M, DWORK( I25 ), M, IWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 7
RETURN
END IF
CALL DGECON( '1', M, DWORK( I25 ), M, ANORM, RCOND( 6 ),
$ DWORK( IWRK ), IWORK( M+1 ), INFO2 )
C
C Return if the matrix is singular to working precision.
C
IF( RCOND( 6 ).LT.TOLL ) THEN
INFO = 7
RETURN
END IF
CALL DGETRS( 'N', M, N, DWORK( I25 ), M, IWORK, CK, LDCK, INFO2 )
C ^ ^
C Compute Dk = M*Dk .
C
CALL DGETRS( 'N', M, NP, DWORK( I25 ), M, IWORK, DK, LDDK, INFO2 )
C ^
C Compute Bk*D .
C
CALL DGEMM( 'N', 'N', N, M, NP, ONE, DWORK( I23 ), N, D, LDD,
$ ZERO, DWORK( I26 ), N )
C ^ ^
C Compute Ak = Ak - Bk*D*Ck.
C
CALL DGEMM( 'N', 'N', N, N, M, -ONE, DWORK( I26 ), N, CK, LDCK,
$ ONE, AK, LDAK )
C ^ ^ -1
C Compute Bk = Bk*(Ip + D*Dk) .
C
ANORM = DLANGE( '1', NP, NP, DWORK( I24 ), NP, DWORK( IWRK ) )
CALL DLACPY( 'Full', N, NP, DWORK( I23 ), N, BK, LDBK )
CALL MB02VD( 'N', N, NP, DWORK( I24 ), NP, IWORK, BK, LDBK,
$ INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 6
RETURN
END IF
CALL DGECON( '1', NP, DWORK( I24 ), NP, ANORM, RCOND( 5 ),
$ DWORK( IWRK ), IWORK( NP+1 ), INFO2 )
C
C Return if the matrix is singular to working precision.
C
IF( RCOND( 5 ).LT.TOLL ) THEN
INFO = 6
RETURN
END IF
C
C Workspace usage.
C
I2 = 1 + NP*NP
I3 = I2 + N*NP
I4 = I3 + M*M
I5 = I4 + N*M
I6 = I5 + NP*N
I7 = I6 + M*N
I8 = I7 + N2*N2
I9 = I8 + N2
C
IWRK = I9 + N2
C
C Compute Ip - D*Dk .
C
CALL DLASET( 'Full', NP, NP, ZERO, ONE, DWORK, NP )
CALL DGEMM( 'N', 'N', NP, NP, M, -ONE, D, LDD, DK, LDDK, ONE,
$ DWORK, NP )
C -1
C Compute Bk*(Ip-D*Dk) .
C
CALL DLACPY( 'Full', N, NP, BK, LDBK, DWORK( I2 ), N )
CALL MB02VD( 'N', N, NP, DWORK, NP, IWORK, DWORK( I2 ), N, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 8
RETURN
END IF
C
C Compute Im - Dk*D .
C
CALL DLASET( 'Full', M, M, ZERO, ONE, DWORK( I3 ), M )
CALL DGEMM( 'N', 'N', M, M, NP, -ONE, DK, LDDK, D, LDD, ONE,
$ DWORK( I3 ), M )
C -1
C Compute B*(Im-Dk*D) .
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK( I4 ), N )
CALL MB02VD( 'N', N, M, DWORK( I3 ), M, IWORK, DWORK( I4 ), N,
$ INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 9
RETURN
END IF
C
C Compute D*Ck .
C
CALL DGEMM( 'N', 'N', NP, N, M, ONE, D, LDD, CK, LDCK, ZERO,
$ DWORK( I5 ), NP )
C
C Compute Dk*C .
C
CALL DGEMM( 'N', 'N', M, N, NP, ONE, DK, LDDK, C, LDC, ZERO,
$ DWORK( I6 ), M )
C
C Compute the closed-loop state matrix.
C
CALL DLACPY( 'F', N, N, A, LDA, DWORK( I7 ), N2 )
CALL DGEMM( 'N', 'N', N, N, M, ONE, DWORK( I4 ), N,
$ DWORK( I6 ), M, ONE, DWORK( I7 ), N2 )
CALL DGEMM( 'N', 'N', N, N, M, ONE, DWORK( I4 ), N, CK, LDCK,
$ ZERO, DWORK( I7+N2*N ), N2 )
CALL DGEMM( 'N', 'N', N, N, NP, ONE, DWORK( I2 ), N, C, LDC,
$ ZERO, DWORK( I7+N ), N2 )
CALL DLACPY( 'F', N, N, AK, LDAK, DWORK( I7+N2*N+N ), N2 )
CALL DGEMM( 'N', 'N', N, N, NP, ONE, DWORK( I2 ), N,
$ DWORK( I5 ), NP, ONE, DWORK( I7+N2*N+N ), N2 )
C
C Compute the closed-loop poles.
C
CALL DGEES( 'N', 'N', SELECT, N2, DWORK( I7 ), N2, SDIM,
$ DWORK( I8 ), DWORK( I9 ), DWORK( IWRK ), N,
$ DWORK( IWRK ), LDWORK-IWRK+1, BWORK, INFO2 )
IF( INFO2.NE.0 ) THEN
INFO = 3
RETURN
END IF
LWAMAX = MAX( LWAMAX, INT( DWORK( IWRK ) ) + IWRK - 1 )
C
C Check the stability of the closed-loop system.
C
NS = 0
C
DO 140 I = 0, N2 - 1
IF( DLAPY2( DWORK( I8+I ), DWORK( I9+I ) ).GT.ONE )
$ NS = NS + 1
140 CONTINUE
C
IF( NS.GT.0 ) THEN
INFO = 10
RETURN
END IF
C
DWORK( 1 ) = DBLE( LWAMAX )
RETURN
C *** Last line of SB10ZD ***
END
|