1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
|
SUBROUTINE SB16AY( DICO, JOBC, JOBO, WEIGHT, N, M, P, NC, NCS,
$ A, LDA, B, LDB, C, LDC, D, LDD,
$ AC, LDAC, BC, LDBC, CC, LDCC, DC, LDDC,
$ SCALEC, SCALEO, S, LDS, R, LDR,
$ IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute for given state-space representations (A,B,C,D) and
C (Ac,Bc,Cc,Dc) of the transfer-function matrices of the
C open-loop system G and feedback controller K, respectively,
C the Cholesky factors of the frequency-weighted
C controllability and observability Grammians corresponding
C to a frequency-weighted model reduction problem.
C The controller must stabilize the closed-loop system.
C The state matrix Ac must be in a block-diagonal real Schur form
C Ac = diag(Ac1,Ac2), where Ac1 contains the unstable eigenvalues
C of Ac and Ac2 contains the stable eigenvalues of Ac.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the systems as follows:
C = 'C': G and K are continuous-time systems;
C = 'D': G and K are discrete-time systems.
C
C JOBC CHARACTER*1
C Specifies the choice of frequency-weighted controllability
C Grammian as follows:
C = 'S': choice corresponding to standard Enns' method [1];
C = 'E': choice corresponding to the stability enhanced
C modified Enns' method of [2].
C
C JOBO CHARACTER*1
C Specifies the choice of frequency-weighted observability
C Grammian as follows:
C = 'S': choice corresponding to standard Enns' method [1];
C = 'E': choice corresponding to the stability enhanced
C modified combination method of [2].
C
C WEIGHT CHARACTER*1
C Specifies the type of frequency-weighting, as follows:
C = 'N': no weightings are used (V = I, W = I);
C = 'O': stability enforcing left (output) weighting
C -1
C V = (I-G*K) *G is used (W = I);
C = 'I': stability enforcing right (input) weighting
C -1
C W = (I-G*K) *G is used (V = I);
C = 'P': stability and performance enforcing weightings
C -1 -1
C V = (I-G*K) *G , W = (I-G*K) are used.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the open-loop system state-space
C representation, i.e., the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NC (input) INTEGER
C The order of the controller state-space representation,
C i.e., the order of the matrix AC. NC >= 0.
C
C NCS (input) INTEGER
C The dimension of the stable part of the controller, i.e.,
C the order of matrix Ac2. NC >= NCS >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C state matrix A of the system with the transfer-function
C matrix G.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input/state matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must contain the
C state/output matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array must contain the
C input/output matrix D of the open-loop system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C AC (input) DOUBLE PRECISION array, dimension (LDAC,NC)
C The leading NC-by-NC part of this array must contain
C the state dynamics matrix Ac of the controller in a
C block diagonal real Schur form Ac = diag(Ac1,Ac2), where
C Ac1 is (NC-NCS)-by-(NC-NCS) and contains the unstable
C eigenvalues of Ac, and Ac2 is NCS-by-NCS and contains
C the stable eigenvalues of Ac.
C
C LDAC INTEGER
C The leading dimension of array AC. LDAC >= MAX(1,NC).
C
C BC (input) DOUBLE PRECISION array, dimension (LDBC,P)
C The leading NC-by-P part of this array must contain
C the input/state matrix Bc of the controller.
C
C LDBC INTEGER
C The leading dimension of array BC. LDBC >= MAX(1,NC).
C
C CC (input) DOUBLE PRECISION array, dimension (LDCC,NC)
C The leading M-by-NC part of this array must contain
C the state/output matrix Cc of the controller.
C
C LDCC INTEGER
C The leading dimension of array CC. LDCC >= MAX(1,M).
C
C DC (input) DOUBLE PRECISION array, dimension (LDDC,P)
C The leading M-by-P part of this array must contain
C the input/output matrix Dc of the controller.
C
C LDDC INTEGER
C The leading dimension of array DC. LDDC >= MAX(1,M).
C
C SCALEC (output) DOUBLE PRECISION
C Scaling factor for the controllability Grammian.
C See METHOD.
C
C SCALEO (output) DOUBLE PRECISION
C Scaling factor for the observability Grammian. See METHOD.
C
C S (output) DOUBLE PRECISION array, dimension (LDS,NCS)
C The leading NCS-by-NCS upper triangular part of this array
C contains the Cholesky factor S of the frequency-weighted
C controllability Grammian P = S*S'. See METHOD.
C
C LDS INTEGER
C The leading dimension of array S. LDS >= MAX(1,NCS).
C
C R (output) DOUBLE PRECISION array, dimension (LDR,NCS)
C The leading NCS-by-NCS upper triangular part of this array
C contains the Cholesky factor R of the frequency-weighted
C observability Grammian Q = R'*R. See METHOD.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,NCS).
C
C Workspace
C
C IWORK INTEGER array, dimension MAX(LIWRK)
C LIWRK = 0, if WEIGHT = 'N';
C LIWRK = 2(M+P), if WEIGHT = 'O', 'I', or 'P'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 1, LFREQ ),
C where
C LFREQ = (N+NC)*(N+NC+2*M+2*P)+
C MAX((N+NC)*(N+NC+MAX(N+NC,M,P)+7), (M+P)*(M+P+4))
C if WEIGHT = 'I' or 'O' or 'P';
C LFREQ = NCS*(MAX(M,P)+5) if WEIGHT = 'N'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the closed-loop system is not well-posed;
C its feedthrough matrix is (numerically) singular;
C = 2: the computation of the real Schur form of the
C closed-loop state matrix failed;
C = 3: the closed-loop state matrix is not stable;
C = 4: the solution of a symmetric eigenproblem failed;
C = 5: the NCS-by-NCS trailing part Ac2 of the state
C matrix Ac is not stable or not in a real Schur form.
C
C METHOD
C
C If JOBC = 'S', the controllability Grammian P is determined as
C follows:
C
C - if WEIGHT = 'O' or 'N', P satisfies for a continuous-time
C controller the Lyapunov equation
C
C Ac2*P + P*Ac2' + scalec^2*Bc*Bc' = 0
C
C and for a discrete-time controller
C
C Ac2*P*Ac2' - P + scalec^2*Bc*Bc' = 0;
C
C - if WEIGHT = 'I' or 'P', let Pi be the solution of the
C continuous-time Lyapunov equation
C
C Ai*Pi + Pi*Ai' + scalec^2*Bi*Bi' = 0
C
C or of the discrete-time Lyapunov equation
C
C Ai*Pi*Ai' - Pi + scalec^2*Bi*Bi' = 0,
C
C where Ai and Bi are the state and input matrices of a special
C state-space realization of the input frequency weight (see [2]);
C P results as the trailing NCS-by-NCS part of Pi partitioned as
C
C Pi = ( * * ).
C ( * P )
C
C If JOBC = 'E', a modified controllability Grammian P1 >= P is
C determined to guarantee stability for a modified Enns' method [2].
C
C If JOBO = 'S', the observability Grammian Q is determined as
C follows:
C
C - if WEIGHT = 'I' or 'N', Q satisfies for a continuous-time
C controller the Lyapunov equation
C
C Ac2'*Q + Q*Ac2 + scaleo^2*Cc'*Cc = 0
C
C and for a discrete-time controller
C
C Ac2'*Q*Ac2 - Q + scaleo^2*Cc'*Cc = 0;
C
C - if WEIGHT = 'O' or 'P', let Qo be the solution of the
C continuous-time Lyapunov equation
C
C Ao'*Qo + Qo*Ao + scaleo^2*Co'*Co = 0
C
C or of the discrete-time Lyapunov equation
C
C Ao'*Qo*Ao - Qo + scaleo^2*Co'*Co = 0,
C
C where Ao and Co are the state and output matrices of a
C special state-space realization of the output frequency weight
C (see [2]); if WEIGHT = 'O', Q results as the leading NCS-by-NCS
C part of Qo partitioned as
C
C Qo = ( Q * )
C ( * * )
C
C while if WEIGHT = 'P', Q results as the trailing NCS-by-NCS
C part of Qo partitioned as
C
C Qo = ( * * ).
C ( * Q )
C
C If JOBO = 'E', a modified observability Grammian Q1 >= Q is
C determined to guarantee stability for a modified Enns' method [2].
C
C The routine computes directly the Cholesky factors S and R
C such that P = S*S' and Q = R'*R according to formulas
C developed in [2].
C
C REFERENCES
C
C [1] Enns, D.
C Model reduction with balanced realizations: An error bound
C and a frequency weighted generalization.
C Proc. CDC, Las Vegas, pp. 127-132, 1984.
C
C [2] Varga, A. and Anderson, B.D.O.
C Frequency-weighted balancing related controller reduction.
C Proceedings of the 15th IFAC World Congress, July 21-26, 2002,
C Barcelona, Spain, Vol.15, Part 1, 2002-07-21.
C
C CONTRIBUTORS
C
C A. Varga, Australian National University, Canberra, November 2000.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000,
C May 2009.
C A. Varga, DLR Oberpfafenhofen, June 2001.
C
C
C KEYWORDS
C
C Controller reduction, frequency weighting, multivariable system,
C state-space model, state-space representation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOBC, JOBO, WEIGHT
INTEGER INFO, LDA, LDAC, LDB, LDBC, LDC, LDCC, LDD, LDDC,
$ LDR, LDS, LDWORK, M, N, NC, NCS, P
DOUBLE PRECISION SCALEC, SCALEO
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AC(LDAC,*), B(LDB,*), BC(LDBC,*),
$ C(LDC,*), CC(LDCC,*), D(LDD,*), DC(LDDC,*),
$ DWORK(*), R(LDR,*), S(LDS,*)
C .. Local Scalars ..
CHARACTER JOBFAC
LOGICAL DISCR, FRWGHT, LEFTW, PERF, RIGHTW
INTEGER I, IERR, J, JJ, KI, KL, KQ, KR, KTAU, KU, KW,
$ KWA, KWB, KWC, KWD, LDU, LW, MBBAR, ME, MP,
$ NCU, NCU1, NE, NNC, NNCU, PCBAR, PE, WRKOPT
DOUBLE PRECISION RCOND, T, TOL
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL AB05PD, AB05QD, AB07ND, DCOPY, DLACPY, DLASET,
$ DSCAL, DSYEV, MB01WD, MB04OD, SB03OD, SB03OU,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
DISCR = LSAME( DICO, 'D' )
LEFTW = LSAME( WEIGHT, 'O' )
RIGHTW = LSAME( WEIGHT, 'I' )
PERF = LSAME( WEIGHT, 'P' )
FRWGHT = LEFTW .OR. RIGHTW .OR. PERF
C
INFO = 0
NNC = N + NC
MP = M + P
IF( FRWGHT ) THEN
LW = NNC*( NNC + 2*MP ) +
$ MAX( NNC*( NNC + MAX( NNC, M, P ) + 7 ), MP*( MP + 4 ) )
ELSE
LW = NCS*( MAX( M, P ) + 5 )
END IF
LW = MAX( 1, LW )
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT.( LSAME( JOBC, 'S' ) .OR. LSAME( JOBC, 'E' ) ) )
$ THEN
INFO = -2
ELSE IF( .NOT.( LSAME( JOBO, 'S' ) .OR. LSAME( JOBO, 'E' ) ) )
$ THEN
INFO = -3
ELSE IF( .NOT.( FRWGHT .OR. LSAME( WEIGHT, 'N' ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( P.LT.0 ) THEN
INFO = -7
ELSE IF( NC.LT.0 ) THEN
INFO = -8
ELSE IF( NCS.LT.0 .OR. NCS.GT.NC ) THEN
INFO = -9
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -13
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -15
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -17
ELSE IF( LDAC.LT.MAX( 1, NC ) ) THEN
INFO = -19
ELSE IF( LDBC.LT.MAX( 1, NC ) ) THEN
INFO = -21
ELSE IF( LDCC.LT.MAX( 1, M ) ) THEN
INFO = -23
ELSE IF( LDDC.LT.MAX( 1, M ) ) THEN
INFO = -25
ELSE IF( LDS.LT.MAX( 1, NCS ) ) THEN
INFO = -29
ELSE IF( LDR.LT.MAX( 1, NCS ) ) THEN
INFO = -31
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -34
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB16AY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
SCALEC = ONE
SCALEO = ONE
IF( MIN( NCS, M, P ).EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
WRKOPT = 1
NCU = NC - NCS
NCU1 = NCU + 1
C
IF( .NOT.PERF ) THEN
C
C Compute the Grammians in the case of no weighting or
C one-sided weighting.
C
IF( LEFTW .OR. LSAME( WEIGHT, 'N' ) ) THEN
C
C Compute the standard controllability Grammian.
C
C Solve for the Cholesky factor S of P, P = S*S',
C the continuous-time Lyapunov equation (if DICO = 'C')
C
C Ac2*P + P*Ac2' + scalec^2*Bc2*Bc2' = 0,
C
C or the discrete-time Lyapunov equation (if DICO = 'D')
C
C Ac2*P*Ac2' - P + scalec^2*Bc2*Bc2' = 0,
C
C where Bc2 is the matrix formed from the last NCS rows of Bc.
C
C Workspace: need NCS*(P+5);
C prefer larger.
KU = 1
KTAU = KU + NCS*P
KW = KTAU + NCS
C
CALL DLACPY( 'Full', NCS, P, BC(NCU1,1), LDBC,
$ DWORK(KU), NCS )
CALL SB03OU( DISCR, .TRUE., NCS, P, AC(NCU1,NCU1), LDAC,
$ DWORK(KU), NCS, DWORK(KTAU), S, LDS, SCALEC,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 5
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
END IF
C
IF( RIGHTW .OR. LSAME( WEIGHT, 'N' ) ) THEN
C
C Compute the standard observability Grammian.
C
C Solve for the Cholesky factor R of Q, Q = R'*R,
C the continuous-time Lyapunov equation (if DICO = 'C')
C
C Ac2'*Q + Q*Ac2 + scaleo^2*Cc2'*Cc2 = 0,
C
C or the discrete-time Lyapunov equation (if DICO = 'D')
C
C Ac2'*Q*Ac2 - Q + scaleo^2*Cc2'*Cc2 = 0,
C
C where Cc2 is the matrix formed from the last NCS columns
C of Cc.
C
C Workspace: need NCS*(M + 5);
C prefer larger.
KU = 1
KTAU = KU + M*NCS
KW = KTAU + NCS
C
CALL DLACPY( 'Full', M, NCS, CC(1,NCU1), LDCC,
$ DWORK(KU), M )
CALL SB03OU( DISCR, .FALSE., NCS, M, AC(NCU1,NCU1), LDAC,
$ DWORK(KU), M, DWORK(KTAU), R, LDR, SCALEO,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 5
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
END IF
C
C Finish if there are no weights.
C
IF( LSAME( WEIGHT, 'N' ) ) THEN
DWORK(1) = WRKOPT
RETURN
END IF
END IF
C
IF( FRWGHT ) THEN
C
C Allocate working storage for computing the weights.
C
C Real workspace: need MAX(1,NNC*NNC+2*NNC*MP+MP*(MP+4));
C Integer workspace: need 2*MP.
C
KWA = 1
KWB = KWA + NNC*NNC
KWC = KWB + NNC*MP
KWD = KWC + NNC*MP
KW = KWD + MP*MP
KL = KWD
C
IF( LEFTW ) THEN
C
C Build the extended matrices
C
C Ao = ( Ac+Bc*inv(R)*D*Cc Bc*inv(R)*C ),
C ( B*inv(Rt)*Cc A+B*Dc*inv(R)*C )
C
C Co = ( -inv(R)*D*Cc -inv(R)*C ) ,
C
C where R = I-D*Dc and Rt = I-Dc*D.
C -1
C Method: Compute Ge = ( Ge11 Ge12 ), where Ge = ( K -Im ).
C ( Ge21 Ge22 ) ( -Ip G )
C
C -1
C Then Ge11 = -(I-G*K) *G .
C
C Construct first Ge = ( K -Im ) such that the stable part
C ( -Ip G )
C of K is in the leading position (to avoid updating of
C QR factorization).
C
CALL DLASET( 'Full', M, P, ZERO, ZERO, DWORK(KWD), MP )
CALL AB05PD( 'N', NCS, P, M, NCU, ONE,
$ AC(NCU1,NCU1), LDAC, BC(NCU1,1), LDBC,
$ CC(1,NCU1), LDCC, DWORK(KWD), MP,
$ AC, LDAC, BC, LDBC, CC, LDCC, DC, LDDC,
$ NE, DWORK(KWA), NNC, DWORK(KWB), NNC,
$ DWORK(KWC), MP, DWORK(KWD), MP, IERR )
CALL AB05QD( 'Over', NC, P, M, N, M, P, DWORK(KWA), NNC,
$ DWORK(KWB), NNC, DWORK(KWC), MP, DWORK(KWD),
$ MP, A, LDA, B, LDB, C, LDC, D, LDD,
$ NE, ME, PE, DWORK(KWA), NNC, DWORK(KWB), NNC,
$ DWORK(KWC), MP, DWORK(KWD), MP, IERR )
CALL DLASET( 'Full', M, M, ZERO, -ONE, DWORK(KWD+MP*P), MP )
CALL DLASET( 'Full', P, P, ZERO, -ONE, DWORK(KWD+M), MP )
C
ELSE
C
C Build the extended matrices
C
C Ai = ( A+B*Dc*inv(R)*C B*inv(Rt)*Cc ) ,
C ( Bc*inv(R)*C Ac+Bc*inv(R)*D*Cc )
C
C Bi = ( B*Dc*inv(R) B*inv(Rt) ) ,
C ( Bc*inv(R) Bc*D*inv(Rt) )
C
C Ci = ( -inv(R)*C -inv(R)*D*Cc ) , where
C
C R = I-D*Dc and Rt = I-Dc*D.
C
C -1
C Method: Compute Ge = ( Ge11 Ge12 ), where Ge = ( G -Ip ).
C ( Ge21 Ge22 ) ( -Im K )
C
C -1 -1
C Then Ge22 = -(I-G*K) *G and Ge21 = -(I-G*K) .
C
C Construct first Ge = ( G -Ip ).
C ( -Im K )
C
CALL AB05QD( 'N', N, M, P, NC, P, M, A, LDA, B, LDB, C, LDC,
$ D, LDD, AC, LDAC, BC, LDBC, CC, LDCC, DC, LDDC,
$ NE, ME, PE, DWORK(KWA), NNC, DWORK(KWB), NNC,
$ DWORK(KWC), MP, DWORK(KWD), MP, IERR )
CALL DLASET( 'Full', P, P, ZERO, -ONE, DWORK(KWD+MP*M), MP )
CALL DLASET( 'Full', M, M, ZERO, -ONE, DWORK(KWD+P), MP )
END IF
C -1
C Compute Ge = ( Ge11 Ge12 ).
C ( Ge21 Ge22 )
C
C Additional real workspace: need 4*MP;
C Integer workspace: need 2*MP.
C
CALL AB07ND( NNC, MP, DWORK(KWA), NNC, DWORK(KWB), NNC,
$ DWORK(KWC), MP, DWORK(KWD), MP, RCOND,
$ IWORK, DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 1
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C -1 ( A1 | B1 B2 )
C Partition Ge = (--------------) and select appropriate
C ( C1 | D11 D12 )
C ( C2 | D21 D22 )
C
C pointers to matrices and column dimensions to define weights.
C
IF( RIGHTW ) THEN
C
C Define B2 for Ge22.
C
ME = M
KWB = KWB + NNC*P
ELSE IF( PERF ) THEN
C
C Define B1 and C2 for Ge21.
C
ME = P
KWC = KWC + M
END IF
END IF
C
IF( LEFTW .OR. PERF ) THEN
C
C Compute the frequency-weighted observability Grammian.
C
C Solve for the Cholesky factor Ro of Qo, Qo = Ro'*Ro,
C the continuous-time Lyapunov equation (if DICO = 'C')
C
C Ao'*Qo + Qo*Ao + scaleo^2*Co'*Co = 0,
C
C or the discrete-time Lyapunov equation (if DICO = 'D')
C
C Ao'*Qo*Ao - Qo + scaleo^2*Co'*Co = 0.
C
C Additional workspace: need NNC*(NNC+MAX(NNC,P)+7);
C prefer larger.
C
LDU = MAX( NNC, P )
KU = KL
KQ = KU + NNC*LDU
KR = KQ + NNC*NNC
KI = KR + NNC
KW = KI + NNC
C
JOBFAC = 'N'
CALL DLACPY( 'Full', P, NNC, DWORK(KWC), MP, DWORK(KU), LDU )
CALL SB03OD( DICO, JOBFAC, 'No-transpose', NNC, P,
$ DWORK(KWA), NNC, DWORK(KQ), NNC, DWORK(KU), LDU,
$ SCALEO, DWORK(KR), DWORK(KI), DWORK(KW),
$ LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.6 ) THEN
INFO = 2
ELSE
INFO = 3
END IF
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Partition Ro as Ro = ( R11 R12 ).
C ( 0 R22 )
C
IF( LEFTW ) THEN
C
C R = R11 (NCS-by-NCS).
C
CALL DLACPY( 'Upper', NCS, NCS, DWORK(KU), LDU, R, LDR )
ELSE
C
C Compute R such that R'*R = R22'*R22 + R12'*R12, where
C R22 is NCS-by-NCS and R12 is (N+NCU)-by-NCS.
C R22 corresponds to the stable part of the controller.
C
NNCU = N + NCU
CALL DLACPY( 'Upper', NCS, NCS, DWORK(KU+(LDU+1)*NNCU), LDU,
$ R, LDR )
KTAU = KU
CALL MB04OD( 'Full', NCS, 0, NNCU, R, LDR,
$ DWORK(KU+LDU*NNCU), LDU, DUM, 1, DUM, 1,
$ DWORK(KTAU), DWORK(KW) )
C
DO 10 J = 1, NCS
IF( R(J,J).LT.ZERO )
$ CALL DSCAL( NCS-J+1, -ONE, R(J,J), LDR )
10 CONTINUE
END IF
END IF
C
IF( RIGHTW .OR. PERF ) THEN
C
C Compute the frequency-weighted controllability Grammian.
C
C Solve for the Cholesky factor Si of Pi, Pi = Si*Si',
C the continuous-time Lyapunov equation (if DICO = 'C')
C
C Ai*Pi + Pi*Ai' + scalec^2*Bi*Bi' = 0,
C
C or the discrete-time Lyapunov equation (if DICO = 'D')
C
C Ai*Pi*Ai' - Pi + scalec^2*Bi*Bi' = 0.
C
C Additional workspace: need NNC*(NNC+MAX(NNC,P,M)+7);
C prefer larger.
C
KU = KL
KQ = KU + NNC*MAX( NNC, ME )
KR = KQ + NNC*NNC
KI = KR + NNC
KW = KI + NNC
C
CALL DLACPY( 'Full', NNC, ME, DWORK(KWB), NNC, DWORK(KU), NNC )
JOBFAC = 'F'
IF( RIGHTW ) JOBFAC = 'N'
CALL SB03OD( DICO, JOBFAC, 'Transpose', NNC, ME,
$ DWORK(KWA), NNC, DWORK(KQ), NNC, DWORK(KU), NNC,
$ SCALEC, DWORK(KR), DWORK(KI), DWORK(KW),
$ LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.6 ) THEN
INFO = 2
ELSE
INFO = 3
END IF
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Partition Si as Si = ( S11 S12 ) with S22 NCS-by-NCS and
C ( 0 S22 )
C set S = S22.
C
NNCU = N + NCU
CALL DLACPY( 'Upper', NCS, NCS, DWORK(KU+(NNC+1)*NNCU), NNC,
$ S, LDS )
END IF
C
KU = 1
IF( LEFTW .OR. PERF ) THEN
IF( LSAME( JOBO, 'E' ) ) THEN
C
C Form Y = -Ac2'*(R'*R)-(R'*R)*Ac2 if DICO = 'C', or
C Y = -Ac2'*(R'*R)*Ac2+(R'*R) if DICO = 'D'.
C
C Workspace: need 2*NCS*NCS.
C
CALL DLACPY( 'Upper', NCS, NCS, R, LDR, DWORK(KU), NCS )
CALL DLACPY( 'Full', NCS, NCS, AC(NCU1,NCU1), LDAC,
$ DWORK(KU+NCS*NCS), NCS )
CALL MB01WD( DICO, 'Upper', 'No-transpose', 'Hessenberg',
$ NCS, -ONE, ZERO, R, LDR, DWORK(KU+NCS*NCS),
$ NCS, DWORK(KU), NCS, IERR )
C
C Compute the eigendecomposition of Y as Y = Z*Sigma*Z'.
C
KW = KU + NCS
CALL DSYEV( 'Vectors', 'Upper', NCS, R, LDR, DWORK(KU),
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.GT.0 ) THEN
INFO = 4
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Partition Sigma = (Sigma1,Sigma2), such that
C Sigma1 <= 0, Sigma2 > 0.
C Partition correspondingly Z = [Z1 Z2].
C
TOL = MAX( ABS( DWORK(KU) ), ABS( DWORK(KU+NCS-1) ) )
$ * DLAMCH( 'Epsilon')
C _
C Form Cc = [ sqrt(Sigma2)*Z2' ]
C
PCBAR = 0
JJ = KU
DO 20 J = 1, NCS
IF( DWORK(JJ).GT.TOL ) THEN
CALL DSCAL( NCS, SQRT( DWORK(JJ) ), R(1,J), 1 )
CALL DCOPY( NCS, R(1,J), 1, DWORK(KW+PCBAR), NCS )
PCBAR = PCBAR + 1
END IF
JJ = JJ + 1
20 CONTINUE
C
C Solve for the Cholesky factor R of Q, Q = R'*R,
C the continuous-time Lyapunov equation (if DICO = 'C')
C _ _
C Ac2'*Q + Q*Ac2 + scaleo^2*Cc'*Cc = 0,
C
C or the discrete-time Lyapunov equation (if DICO = 'D')
C _ _
C Ac2'*Q*Ac2 - Q + scaleo^2*Cc'*Cc = 0.
C
C Workspace: need NCS*(NCS + 6);
C prefer larger.
C
KU = KW
KTAU = KU + NCS*NCS
KW = KTAU + NCS
C
CALL SB03OU( DISCR, .FALSE., NCS, PCBAR, AC(NCU1,NCU1),
$ LDAC, DWORK(KU), NCS, DWORK(KTAU), R, LDR, T,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 5
RETURN
END IF
SCALEO = SCALEO*T
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
END IF
C
END IF
C
IF( RIGHTW .OR. PERF ) THEN
IF( LSAME( JOBC, 'E' ) ) THEN
C
C Form X = -A2c*(S*S')-(S*S')*Ac2' if DICO = 'C', or
C X = -Ac2*(S*S')*Ac2'+(S*S') if DICO = 'D'.
C
C Workspace: need 2*NCS*NCS.
C
CALL DLACPY( 'Upper', NCS, NCS, S, LDS, DWORK(KU), NCS )
CALL DLACPY( 'Full', NCS, NCS, AC(NCU1,NCU1), LDAC,
$ DWORK(KU+NCS*NCS), NCS )
CALL MB01WD( DICO, 'Upper', 'Transpose', 'Hessenberg', NCS,
$ -ONE, ZERO, S, LDS, DWORK(KU+NCS*NCS), NCS,
$ DWORK(KU), NCS, IERR )
C
C Compute the eigendecomposition of X as X = Z*Sigma*Z'.
C
KW = KU + NCS
CALL DSYEV( 'Vectors', 'Upper', NCS, S, LDS, DWORK(KU),
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.GT.0 ) THEN
INFO = 4
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Partition Sigma = (Sigma1,Sigma2), such that
C Sigma1 =< 0, Sigma2 > 0.
C Partition correspondingly Z = [Z1 Z2].
C
TOL = MAX( ABS( DWORK(KU) ), ABS( DWORK(KU+NCS-1) ) )
$ * DLAMCH( 'Epsilon')
C _
C Form Bc = [ Z2*sqrt(Sigma2) ]
C
MBBAR = 0
I = KW
JJ = KU
DO 30 J = 1, NCS
IF( DWORK(JJ).GT.TOL ) THEN
MBBAR = MBBAR + 1
CALL DSCAL( NCS, SQRT( DWORK(JJ) ), S(1,J), 1 )
CALL DCOPY( NCS, S(1,J), 1, DWORK(I), 1 )
I = I + NCS
END IF
JJ = JJ + 1
30 CONTINUE
C
C Solve for the Cholesky factor S of P, P = S*S',
C the continuous-time Lyapunov equation (if DICO = 'C')
C _ _
C Ac2*P + P*Ac2' + scalec^2*Bc*Bc' = 0,
C
C or the discrete-time Lyapunov equation (if DICO = 'D')
C _ _
C Ac2*P*Ac2' - P + scalec^2*Bc*Bc' = 0.
C
C Workspace: need maximum NCS*(NCS + 6);
C prefer larger.
C
KU = KW
KTAU = KU + MBBAR*NCS
KW = KTAU + NCS
C
CALL SB03OU( DISCR, .TRUE., NCS, MBBAR, AC(NCU1,NCU1), LDAC,
$ DWORK(KU), NCS, DWORK(KTAU), S, LDS, T,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 5
RETURN
END IF
SCALEC = SCALEC*T
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
END IF
C
END IF
C
C Save optimal workspace.
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of SB16AY ***
END
|