1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
SUBROUTINE SB16CY( DICO, JOBCF, N, M, P, A, LDA, B, LDB, C, LDC,
$ F, LDF, G, LDG, SCALEC, SCALEO, S, LDS, R, LDR,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute, for a given open-loop model (A,B,C,0), and for
C given state feedback gain F and full observer gain G,
C such that A+B*F and A+G*C are stable, the Cholesky factors
C Su and Ru of a controllability Grammian P = Su*Su' and of
C an observability Grammian Q = Ru'*Ru corresponding to a
C frequency-weighted model reduction of the left or right coprime
C factors of the state-feedback controller.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the open-loop system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOBCF CHARACTER*1
C Specifies whether a left or right coprime factorization
C of the state-feedback controller is to be used as follows:
C = 'L': use a left coprime factorization;
C = 'R': use a right coprime factorization.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the open-loop state-space representation,
C i.e., the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C state matrix A of the open-loop system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input/state matrix B of the open-loop system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must contain the
C state/output matrix C of the open-loop system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C F (input) DOUBLE PRECISION array, dimension (LDF,N)
C The leading M-by-N part of this array must contain a
C stabilizing state feedback matrix.
C
C LDF INTEGER
C The leading dimension of array F. LDF >= MAX(1,M).
C
C G (input) DOUBLE PRECISION array, dimension (LDG,P)
C The leading N-by-P part of this array must contain a
C stabilizing observer gain matrix.
C
C LDG INTEGER
C The leading dimension of array G. LDG >= MAX(1,N).
C
C SCALEC (output) DOUBLE PRECISION
C Scaling factor for the controllability Grammian.
C See METHOD.
C
C SCALEO (output) DOUBLE PRECISION
C Scaling factor for the observability Grammian.
C See METHOD.
C
C S (output) DOUBLE PRECISION array, dimension (LDS,N)
C The leading N-by-N upper triangular part of this array
C contains the Cholesky factor Su of frequency-weighted
C cotrollability Grammian P = Su*Su'. See METHOD.
C
C LDS INTEGER
C The leading dimension of the array S. LDS >= MAX(1,N).
C
C R (output) DOUBLE PRECISION array, dimension (LDR,N)
C The leading N-by-N upper triangular part of this array
C contains the Cholesky factor Ru of the frequency-weighted
C observability Grammian Q = Ru'*Ru. See METHOD.
C
C LDR INTEGER
C The leading dimension of the array R. LDR >= MAX(1,N).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1, N*(N + MAX(N,M) + MIN(N,M) + 6)),
C if JOBCF = 'L';
C LDWORK >= MAX(1, N*(N + MAX(N,P) + MIN(N,P) + 6)),
C if JOBCF = 'R'.
C For optimum performance LDWORK should be larger.
C An upper bound for both cases is
C LDWORK >= MAX(1, N*(N + MAX(N,M,P) + 7)).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: eigenvalue computation failure;
C = 2: the matrix A+G*C is not stable;
C = 3: the matrix A+B*F is not stable;
C = 4: the Lyapunov equation for computing the
C observability Grammian is (nearly) singular;
C = 5: the Lyapunov equation for computing the
C controllability Grammian is (nearly) singular.
C
C METHOD
C
C In accordance with the type of the coprime factorization
C of the controller (left or right), the Cholesky factors Su and Ru
C of the frequency-weighted controllability Grammian P = Su*Su' and
C of the frequency-weighted observability Grammian Q = Ru'*Ru are
C computed by solving appropriate Lyapunov or Stein equations [1].
C
C If JOBCF = 'L' and DICO = 'C', P and Q are computed as the
C solutions of the following Lyapunov equations:
C
C (A+B*F)*P + P*(A+B*F)' + scalec^2*B*B' = 0, (1)
C
C (A+G*C)'*Q + Q*(A+G*C) + scaleo^2*F'*F = 0. (2)
C
C If JOBCF = 'L' and DICO = 'D', P and Q are computed as the
C solutions of the following Stein equations:
C
C (A+B*F)*P*(A+B*F)' - P + scalec^2*B*B' = 0, (3)
C
C (A+G*C)'*Q*(A+G*C) - Q + scaleo^2*F'*F = 0. (4)
C
C If JOBCF = 'R' and DICO = 'C', P and Q are computed as the
C solutions of the following Lyapunov equations:
C
C (A+B*F)*P + P*(A+B*F)' + scalec^2*G*G' = 0, (5)
C
C (A+G*C)'*Q + Q*(A+G*C) + scaleo^2*C'*C = 0. (6)
C
C If JOBCF = 'R' and DICO = 'D', P and Q are computed as the
C solutions of the following Stein equations:
C
C (A+B*F)*P*(A+B*F)' - P + scalec^2*G*G' = 0, (7)
C
C (A+G*C)'*Q*(A+G*C) - Q + scaleo^2*C'*C = 0. (8)
C
C REFERENCES
C
C [1] Liu, Y., Anderson, B.D.O. and Ly, O.L.
C Coprime factorization controller reduction with Bezout
C identity induced frequency weighting.
C Automatica, vol. 26, pp. 233-249, 1990.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, October 2000.
C D. Sima, University of Bucharest, October 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2000.
C
C REVISIONS
C
C A. Varga, Australian National University, Canberra, November 2000.
C
C KEYWORDS
C
C Controller reduction, frequency weighting, multivariable system,
C state-space model, state-space representation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOBCF
INTEGER INFO, LDA, LDB, LDC, LDF, LDG, LDR, LDS, LDWORK,
$ M, N, P
DOUBLE PRECISION SCALEC, SCALEO
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
$ F(LDF,*), G(LDG,*), R(LDR,*), S(LDS,*)
C .. Local Scalars ..
LOGICAL DISCR, LEFTW
INTEGER IERR, KAW, KU, KW, KWI, KWR, LDU, LW, ME, MP,
$ WRKOPT
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, SB03OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
DISCR = LSAME( DICO, 'D' )
LEFTW = LSAME( JOBCF, 'L' )
C
INFO = 0
IF( LEFTW ) THEN
MP = M
ELSE
MP = P
END IF
LW = N*( N + MAX( N, MP ) + MIN( N, MP ) + 6 )
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT.( LEFTW .OR. LSAME( JOBCF, 'R' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( P.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -11
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -13
ELSE IF( LDG.LT.MAX( 1, N ) ) THEN
INFO = -15
ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
INFO = -19
ELSE IF( LDR.LT.MAX( 1, N ) ) THEN
INFO = -21
ELSE IF( LDWORK.LT.MAX( 1, LW ) ) THEN
INFO = -23
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB16CY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
SCALEC = ONE
SCALEO = ONE
DWORK(1) = ONE
RETURN
END IF
C
C Allocate storage for work arrays.
C
KAW = 1
KU = KAW + N*N
KWR = KU + N*MAX( N, MP )
KWI = KWR + N
KW = KWI + N
C
C Form A+G*C.
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK(KAW), N )
CALL DGEMM( 'No-transpose', 'No-transpose', N, N, P, ONE,
$ G, LDG, C, LDC, ONE, DWORK(KAW), N )
C
C Form the factor H of the free term.
C
IF( LEFTW ) THEN
C
C H = F.
C
LDU = MAX( N, M )
ME = M
CALL DLACPY( 'Full', M, N, F, LDF, DWORK(KU), LDU )
ELSE
C
C H = C.
C
LDU = MAX( N, P )
ME = P
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), LDU )
END IF
C
C Solve for the Cholesky factor Ru of Q, Q = Ru'*Ru,
C the continuous-time Lyapunov equation (if DICO = 'C')
C
C (A+G*C)'*Q + Q*(A+G*C) + scaleo^2*H'*H = 0,
C
C or the discrete-time Lyapunov equation (if DICO = 'D')
C
C (A+G*C)'*Q*(A+G*C) - Q + scaleo^2*H'*H = 0.
C
C Workspace: need N*(N + MAX(N,M) + MIN(N,M) + 6) if JOBCF = 'L';
C N*(N + MAX(N,P) + MIN(N,P) + 6) if JOBCF = 'R'.
C prefer larger.
C
CALL SB03OD( DICO, 'NoFact', 'NoTransp', N, ME, DWORK(KAW), N,
$ R, LDR, DWORK(KU), LDU, SCALEO, DWORK(KWR),
$ DWORK(KWI), DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.2 ) THEN
INFO = 2
ELSE IF( IERR.EQ.1 ) THEN
INFO = 4
ELSE IF( IERR.EQ.6 ) THEN
INFO = 1
END IF
RETURN
END IF
C
WRKOPT = INT( DWORK(KW) ) + KW - 1
CALL DLACPY( 'Upper', N, N, DWORK(KU), LDU, R, LDR )
C
C Form A+B*F.
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK(KAW), N )
CALL DGEMM( 'No-transpose', 'No-transpose', N, N, M, ONE,
$ B, LDB, F, LDF, ONE, DWORK(KAW), N )
C
C Form the factor K of the free term.
C
LDU = N
IF( LEFTW ) THEN
C
C K = B.
C
ME = M
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), LDU )
ELSE
C
C K = G.
C
ME = P
CALL DLACPY( 'Full', N, P, G, LDG, DWORK(KU), LDU )
END IF
C
C Solve for the Cholesky factor Su of P, P = Su*Su',
C the continuous-time Lyapunov equation (if DICO = 'C')
C
C (A+B*F)*P + P*(A+B*F)' + scalec^2*K*K' = 0,
C
C or the discrete-time Lyapunov equation (if DICO = 'D')
C
C (A+B*F)*P*(A+B*F)' - P + scalec^2*K*K' = 0.
C
C Workspace: need N*(N + MAX(N,M) + MIN(N,M) + 6) if JOBCF = 'L';
C N*(N + MAX(N,P) + MIN(N,P) + 6) if JOBCF = 'R'.
C prefer larger.
C
CALL SB03OD( DICO, 'NoFact', 'Transp', N, ME, DWORK(KAW), N,
$ S, LDS, DWORK(KU), LDU, SCALEC, DWORK(KWR),
$ DWORK(KWI), DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.EQ.2 ) THEN
INFO = 3
ELSE IF( IERR.EQ.1 ) THEN
INFO = 5
ELSE IF( IERR.EQ.6 ) THEN
INFO = 1
END IF
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
CALL DLACPY( 'Upper', N, N, DWORK(KU), LDU, S, LDS )
C
C Save the optimal workspace.
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of SB16CY ***
END
|