1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
SUBROUTINE SG03AD( DICO, JOB, FACT, TRANS, UPLO, N, A, LDA, E,
$ LDE, Q, LDQ, Z, LDZ, X, LDX, SCALE, SEP, FERR,
$ ALPHAR, ALPHAI, BETA, IWORK, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X either the generalized continuous-time Lyapunov
C equation
C
C T T
C op(A) X op(E) + op(E) X op(A) = SCALE * Y, (1)
C
C or the generalized discrete-time Lyapunov equation
C
C T T
C op(A) X op(A) - op(E) X op(E) = SCALE * Y, (2)
C
C where op(M) is either M or M**T for M = A, E and the right hand
C side Y is symmetric. A, E, Y, and the solution X are N-by-N
C matrices. SCALE is an output scale factor, set to avoid overflow
C in X.
C
C Estimates of the separation and the relative forward error norm
C are provided.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies which type of the equation is considered:
C = 'C': Continuous-time equation (1);
C = 'D': Discrete-time equation (2).
C
C JOB CHARACTER*1
C Specifies if the solution is to be computed and if the
C separation is to be estimated:
C = 'X': Compute the solution only;
C = 'S': Estimate the separation only;
C = 'B': Compute the solution and estimate the separation.
C
C FACT CHARACTER*1
C Specifies whether the generalized real Schur
C factorization of the pencil A - lambda * E is supplied
C on entry or not:
C = 'N': Factorization is not supplied;
C = 'F': Factorization is supplied.
C
C TRANS CHARACTER*1
C Specifies whether the transposed equation is to be solved
C or not:
C = 'N': op(A) = A, op(E) = E;
C = 'T': op(A) = A**T, op(E) = E**T.
C
C UPLO CHARACTER*1
C Specifies whether the lower or the upper triangle of the
C array X is needed on input:
C = 'L': Only the lower triangle is needed on input;
C = 'U': Only the upper triangle is needed on input.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, if FACT = 'F', then the leading N-by-N upper
C Hessenberg part of this array must contain the
C generalized Schur factor A_s of the matrix A (see
C definition (3) in section METHOD). A_s must be an upper
C quasitriangular matrix. The elements below the upper
C Hessenberg part of the array A are not referenced.
C If FACT = 'N', then the leading N-by-N part of this
C array must contain the matrix A.
C On exit, the leading N-by-N part of this array contains
C the generalized Schur factor A_s of the matrix A. (A_s is
C an upper quasitriangular matrix.)
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, if FACT = 'F', then the leading N-by-N upper
C triangular part of this array must contain the
C generalized Schur factor E_s of the matrix E (see
C definition (4) in section METHOD). The elements below the
C upper triangular part of the array E are not referenced.
C If FACT = 'N', then the leading N-by-N part of this
C array must contain the coefficient matrix E of the
C equation.
C On exit, the leading N-by-N part of this array contains
C the generalized Schur factor E_s of the matrix E. (E_s is
C an upper triangular matrix.)
C
C LDE INTEGER
C The leading dimension of the array E. LDE >= MAX(1,N).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C On entry, if FACT = 'F', then the leading N-by-N part of
C this array must contain the orthogonal matrix Q from
C the generalized Schur factorization (see definitions (3)
C and (4) in section METHOD).
C If FACT = 'N', Q need not be set on entry.
C On exit, the leading N-by-N part of this array contains
C the orthogonal matrix Q from the generalized Schur
C factorization.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= MAX(1,N).
C
C Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C On entry, if FACT = 'F', then the leading N-by-N part of
C this array must contain the orthogonal matrix Z from
C the generalized Schur factorization (see definitions (3)
C and (4) in section METHOD).
C If FACT = 'N', Z need not be set on entry.
C On exit, the leading N-by-N part of this array contains
C the orthogonal matrix Z from the generalized Schur
C factorization.
C
C LDZ INTEGER
C The leading dimension of the array Z. LDZ >= MAX(1,N).
C
C X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, if JOB = 'B' or 'X', then the leading N-by-N
C part of this array must contain the right hand side matrix
C Y of the equation. Either the lower or the upper
C triangular part of this array is needed (see mode
C parameter UPLO).
C If JOB = 'S', X is not referenced.
C On exit, if JOB = 'B' or 'X', and INFO = 0, 3, or 4, then
C the leading N-by-N part of this array contains the
C solution matrix X of the equation.
C If JOB = 'S', X is not referenced.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= MAX(1,N).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor set to avoid overflow in X.
C (0 < SCALE <= 1)
C
C SEP (output) DOUBLE PRECISION
C If JOB = 'S' or JOB = 'B', and INFO = 0, 3, or 4, then
C SEP contains an estimate of the separation of the
C Lyapunov operator.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'B', and INFO = 0, 3, or 4, then FERR contains an
C estimated forward error bound for the solution X. If XTRUE
C is the true solution, FERR estimates the relative error
C in the computed solution, measured in the Frobenius norm:
C norm(X - XTRUE) / norm(XTRUE)
C
C ALPHAR (output) DOUBLE PRECISION array, dimension (N)
C ALPHAI (output) DOUBLE PRECISION array, dimension (N)
C BETA (output) DOUBLE PRECISION array, dimension (N)
C If FACT = 'N' and INFO = 0, 3, or 4, then
C (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, are the
C eigenvalues of the matrix pencil A - lambda * E.
C If FACT = 'F', ALPHAR, ALPHAI, and BETA are not
C referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N**2)
C IWORK is not referenced if JOB = 'X'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. The following table
C contains the minimal work space requirements depending
C on the choice of JOB and FACT.
C
C JOB FACT | LDWORK
C -------------------+-------------------
C 'X' 'F' | MAX(1,N)
C 'X' 'N' | MAX(1,4*N)
C 'B', 'S' 'F' | MAX(1,2*N**2)
C 'B', 'S' 'N' | MAX(1,2*N**2,4*N)
C
C For optimum performance, LDWORK should be larger.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: FACT = 'F' and the matrix contained in the upper
C Hessenberg part of the array A is not in upper
C quasitriangular form;
C = 2: FACT = 'N' and the pencil A - lambda * E cannot be
C reduced to generalized Schur form: LAPACK routine
C DGEGS has failed to converge;
C = 3: DICO = 'D' and the pencil A - lambda * E has a
C pair of reciprocal eigenvalues. That is, lambda_i =
C 1/lambda_j for some i and j, where lambda_i and
C lambda_j are eigenvalues of A - lambda * E. Hence,
C equation (2) is singular; perturbed values were
C used to solve the equation (but the matrices A and
C E are unchanged);
C = 4: DICO = 'C' and the pencil A - lambda * E has a
C degenerate pair of eigenvalues. That is, lambda_i =
C -lambda_j for some i and j, where lambda_i and
C lambda_j are eigenvalues of A - lambda * E. Hence,
C equation (1) is singular; perturbed values were
C used to solve the equation (but the matrices A and
C E are unchanged).
C
C METHOD
C
C A straightforward generalization [3] of the method proposed by
C Bartels and Stewart [1] is utilized to solve (1) or (2).
C
C First the pencil A - lambda * E is reduced to real generalized
C Schur form A_s - lambda * E_s by means of orthogonal
C transformations (QZ-algorithm):
C
C A_s = Q**T * A * Z (upper quasitriangular) (3)
C
C E_s = Q**T * E * Z (upper triangular). (4)
C
C If FACT = 'F', this step is omitted. Assuming SCALE = 1 and
C defining
C
C ( Z**T * Y * Z : TRANS = 'N'
C Y_s = <
C ( Q**T * Y * Q : TRANS = 'T'
C
C
C ( Q**T * X * Q if TRANS = 'N'
C X_s = < (5)
C ( Z**T * X * Z if TRANS = 'T'
C
C leads to the reduced Lyapunov equation
C
C T T
C op(A_s) X_s op(E_s) + op(E_s) X_s op(A_s) = Y_s, (6)
C
C or
C T T
C op(A_s) X_s op(A_s) - op(E_s) X_s op(E_s) = Y_s, (7)
C
C which are equivalent to (1) or (2), respectively. The solution X_s
C of (6) or (7) is computed via block back substitution (if TRANS =
C 'N') or block forward substitution (if TRANS = 'T'), where the
C block order is at most 2. (See [1] and [3] for details.)
C Equation (5) yields the solution matrix X.
C
C For fast computation the estimates of the separation and the
C forward error are gained from (6) or (7) rather than (1) or
C (2), respectively. We consider (6) and (7) as special cases of the
C generalized Sylvester equation
C
C R * X * S + U * X * V = Y, (8)
C
C whose separation is defined as follows
C
C sep = sep(R,S,U,V) = min || R * X * S + U * X * V || .
C ||X|| = 1 F
C F
C
C Equation (8) is equivalent to the system of linear equations
C
C K * vec(X) = (kron(S**T,R) + kron(V**T,U)) * vec(X) = vec(Y),
C
C where kron is the Kronecker product of two matrices and vec
C is the mapping that stacks the columns of a matrix. If K is
C nonsingular then
C
C sep = 1 / ||K**(-1)|| .
C 2
C
C We estimate ||K**(-1)|| by a method devised by Higham [2]. Note
C that this method yields an estimation for the 1-norm but we use it
C as an approximation for the 2-norm. Estimates for the forward
C error norm are provided by
C
C FERR = 2 * EPS * ||A_s|| * ||E_s|| / sep
C F F
C
C in the continuous-time case (1) and
C
C FERR = EPS * ( ||A_s|| **2 + ||E_s|| **2 ) / sep
C F F
C
C in the discrete-time case (2).
C The reciprocal condition number, RCOND, of the Lyapunov equation
C can be estimated by FERR/EPS.
C
C REFERENCES
C
C [1] Bartels, R.H., Stewart, G.W.
C Solution of the equation A X + X B = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Higham, N.J.
C FORTRAN codes for estimating the one-norm of a real or complex
C matrix, with applications to condition estimation.
C A.C.M. Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, 1988.
C
C [3] Penzl, T.
C Numerical solution of generalized Lyapunov equations.
C Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C NUMERICAL ASPECTS
C
C The number of flops required by the routine is given by the
C following table. Note that we count a single floating point
C arithmetic operation as one flop. c is an integer number of modest
C size (say 4 or 5).
C
C | FACT = 'F' FACT = 'N'
C -----------+------------------------------------------
C JOB = 'B' | (26+8*c)/3 * N**3 (224+8*c)/3 * N**3
C JOB = 'S' | 8*c/3 * N**3 (198+8*c)/3 * N**3
C JOB = 'X' | 26/3 * N**3 224/3 * N**3
C
C The algorithm is backward stable if the eigenvalues of the pencil
C A - lambda * E are real. Otherwise, linear systems of order at
C most 4 are involved into the computation. These systems are solved
C by Gauss elimination with complete pivoting. The loss of stability
C of the Gauss elimination with complete pivoting is rarely
C encountered in practice.
C
C The Lyapunov equation may be very ill-conditioned. In particular,
C if DICO = 'D' and the pencil A - lambda * E has a pair of almost
C reciprocal eigenvalues, or DICO = 'C' and the pencil has an almost
C degenerate pair of eigenvalues, then the Lyapunov equation will be
C ill-conditioned. Perturbed values were used to solve the equation.
C Ill-conditioning can be detected by a very small value of the
C reciprocal condition number RCOND.
C
C CONTRIBUTOR
C
C T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C
C REVISIONS
C
C Sep. 1998 (V. Sima).
C Dec. 1998 (V. Sima).
C
C KEYWORDS
C
C Lyapunov equation
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, TWO, ZERO
PARAMETER ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOB, TRANS, UPLO
DOUBLE PRECISION FERR, SCALE, SEP
INTEGER INFO, LDA, LDE, LDQ, LDWORK, LDX, LDZ, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ALPHAI(*), ALPHAR(*), BETA(*),
$ DWORK(*), E(LDE,*), Q(LDQ,*), X(LDX,*),
$ Z(LDZ,*)
INTEGER IWORK(*)
C .. Local Scalars ..
CHARACTER ETRANS
DOUBLE PRECISION EST, EPS, NORMA, NORME, SCALE1
INTEGER I, INFO1, KASE, MINWRK, OPTWRK
LOGICAL ISDISC, ISFACT, ISTRAN, ISUPPR, WANTBH, WANTSP,
$ WANTX
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DNRM2
LOGICAL LSAME
EXTERNAL DLAMCH, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEGS, DLACON, MB01RD, MB01RW, SG03AX,
$ SG03AY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN
C .. Executable Statements ..
C
C Decode input parameters.
C
ISDISC = LSAME( DICO, 'D' )
WANTX = LSAME( JOB, 'X' )
WANTSP = LSAME( JOB, 'S' )
WANTBH = LSAME( JOB, 'B' )
ISFACT = LSAME( FACT, 'F' )
ISTRAN = LSAME( TRANS, 'T' )
ISUPPR = LSAME( UPLO, 'U' )
C
C Check the scalar input parameters.
C
IF ( .NOT.( ISDISC .OR. LSAME( DICO, 'C' ) ) ) THEN
INFO = -1
ELSEIF ( .NOT.( WANTX .OR. WANTSP .OR. WANTBH ) ) THEN
INFO = -2
ELSEIF ( .NOT.( ISFACT .OR. LSAME( FACT, 'N' ) ) ) THEN
INFO = -3
ELSEIF ( .NOT.( ISTRAN .OR. LSAME( TRANS, 'N' ) ) ) THEN
INFO = -4
ELSEIF ( .NOT.( ISUPPR .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -5
ELSEIF ( N .LT. 0 ) THEN
INFO = -6
ELSEIF ( LDA .LT. MAX( 1, N ) ) THEN
INFO = -8
ELSEIF ( LDE .LT. MAX( 1, N ) ) THEN
INFO = -10
ELSEIF ( LDQ .LT. MAX( 1, N ) ) THEN
INFO = -12
ELSEIF ( LDZ .LT. MAX( 1, N ) ) THEN
INFO = -14
ELSEIF ( LDX .LT. MAX( 1, N ) ) THEN
INFO = -16
ELSE
INFO = 0
END IF
IF ( INFO .EQ. 0 ) THEN
C
C Compute minimal workspace.
C
IF ( WANTX ) THEN
IF ( ISFACT ) THEN
MINWRK = MAX( N, 1 )
ELSE
MINWRK = MAX( 4*N, 1 )
END IF
ELSE
IF ( ISFACT ) THEN
MINWRK = MAX( 2*N*N, 1 )
ELSE
MINWRK = MAX( 2*N*N, 4*N, 1 )
END IF
END IF
IF ( MINWRK .GT. LDWORK ) THEN
INFO = -25
END IF
END IF
IF ( INFO .NE. 0 ) THEN
CALL XERBLA( 'SG03AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N .EQ. 0 ) THEN
SCALE = ONE
IF ( .NOT.WANTX ) SEP = ZERO
IF ( WANTBH ) FERR = ZERO
DWORK(1) = ONE
RETURN
END IF
C
IF ( ISFACT ) THEN
C
C Make sure the upper Hessenberg part of A is quasitriangular.
C
DO 20 I = 1, N-2
IF ( A(I+1,I).NE.ZERO .AND. A(I+2,I+1).NE.ZERO ) THEN
INFO = 1
RETURN
END IF
20 CONTINUE
END IF
C
IF ( .NOT.ISFACT ) THEN
C
C Reduce A - lambda * E to generalized Schur form.
C
C A := Q**T * A * Z (upper quasitriangular)
C E := Q**T * E * Z (upper triangular)
C
C ( Workspace: >= MAX(1,4*N) )
C
CALL DGEGS( 'Vectors', 'Vectors', N, A, LDA, E, LDE, ALPHAR,
$ ALPHAI, BETA, Q, LDQ, Z, LDZ, DWORK, LDWORK,
$ INFO1 )
IF ( INFO1 .NE. 0 ) THEN
INFO = 2
RETURN
END IF
OPTWRK = INT( DWORK(1) )
ELSE
OPTWRK = MINWRK
END IF
C
IF ( WANTBH .OR. WANTX ) THEN
C
C Transform right hand side.
C
C X := Z**T * X * Z or X := Q**T * X * Q
C
C Use BLAS 3 if there is enough workspace. Otherwise, use BLAS 2.
C
C ( Workspace: >= N )
C
IF ( LDWORK .LT. N*N ) THEN
IF ( ISTRAN ) THEN
CALL MB01RW( UPLO, 'Transpose', N, N, X, LDX, Q, LDQ,
$ DWORK, INFO1 )
ELSE
CALL MB01RW( UPLO, 'Transpose', N, N, X, LDX, Z, LDZ,
$ DWORK, INFO1 )
END IF
ELSE
IF ( ISTRAN ) THEN
CALL MB01RD( UPLO, 'Transpose', N, N, ZERO, ONE, X, LDX,
$ Q, LDQ, X, LDX, DWORK, LDWORK, INFO )
ELSE
CALL MB01RD( UPLO, 'Transpose', N, N, ZERO, ONE, X, LDX,
$ Z, LDZ, X, LDX, DWORK, LDWORK, INFO )
END IF
END IF
IF ( .NOT.ISUPPR ) THEN
DO 40 I = 1, N-1
CALL DCOPY( N-I, X(I+1,I), 1, X(I,I+1), LDX )
40 CONTINUE
END IF
OPTWRK = MAX( OPTWRK, N*N )
C
C Solve reduced generalized Lyapunov equation.
C
IF ( ISDISC ) THEN
CALL SG03AX( TRANS, N, A, LDA, E, LDE, X, LDX, SCALE, INFO1)
IF ( INFO1 .NE. 0 )
$ INFO = 3
ELSE
CALL SG03AY( TRANS, N, A, LDA, E, LDE, X, LDX, SCALE, INFO1)
IF ( INFO1 .NE. 0 )
$ INFO = 4
END IF
C
C Transform the solution matrix back.
C
C X := Q * X * Q**T or X := Z * X * Z**T.
C
C Use BLAS 3 if there is enough workspace. Otherwise, use BLAS 2.
C
C ( Workspace: >= N )
C
IF ( LDWORK .LT. N*N ) THEN
IF ( ISTRAN ) THEN
CALL MB01RW( 'Upper', 'NoTranspose', N, N, X, LDX, Z,
$ LDZ, DWORK, INFO1 )
ELSE
CALL MB01RW( 'Upper', 'NoTranspose', N, N, X, LDX, Q,
$ LDQ, DWORK, INFO1 )
END IF
ELSE
IF ( ISTRAN ) THEN
CALL MB01RD( 'Upper', 'NoTranspose', N, N, ZERO, ONE, X,
$ LDX, Z, LDZ, X, LDX, DWORK, LDWORK, INFO )
ELSE
CALL MB01RD( 'Upper', 'NoTranspose', N, N, ZERO, ONE, X,
$ LDX, Q, LDQ, X, LDX, DWORK, LDWORK, INFO )
END IF
END IF
DO 60 I = 1, N-1
CALL DCOPY( N-I, X(I,I+1), LDX, X(I+1,I), 1 )
60 CONTINUE
END IF
C
IF ( WANTBH .OR. WANTSP ) THEN
C
C Estimate the 1-norm of the inverse Kronecker product matrix
C belonging to the reduced generalized Lyapunov equation.
C
C ( Workspace: 2*N*N )
C
EST = ZERO
KASE = 0
80 CONTINUE
CALL DLACON( N*N, DWORK(N*N+1), DWORK, IWORK, EST, KASE )
IF ( KASE .NE. 0 ) THEN
IF ( ( KASE.EQ.1 .AND. .NOT.ISTRAN ) .OR.
$ ( KASE.NE.1 .AND. ISTRAN ) ) THEN
ETRANS = 'N'
ELSE
ETRANS = 'T'
END IF
IF ( ISDISC ) THEN
CALL SG03AX( ETRANS, N, A, LDA, E, LDE, DWORK, N, SCALE1,
$ INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 3
ELSE
CALL SG03AY( ETRANS, N, A, LDA, E, LDE, DWORK, N, SCALE1,
$ INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 4
END IF
GOTO 80
END IF
SEP = SCALE1/EST
END IF
C
C Estimate the relative forward error.
C
C ( Workspace: 2*N )
C
IF ( WANTBH ) THEN
EPS = DLAMCH( 'Precision' )
DO 100 I = 1, N
DWORK(I) = DNRM2( MIN( I+1, N ), A(1,I), 1 )
DWORK(N+I) = DNRM2( I, E(1,I), 1 )
100 CONTINUE
NORMA = DNRM2( N, DWORK, 1 )
NORME = DNRM2( N, DWORK(N+1), 1 )
IF ( ISDISC ) THEN
FERR = ( NORMA**2 + NORME**2 )*EPS/SEP
ELSE
FERR = TWO*NORMA*NORME*EPS/SEP
END IF
END IF
C
DWORK(1) = DBLE( MAX( OPTWRK, MINWRK ) )
RETURN
C *** Last line of SG03AD ***
END
|