1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
|
SUBROUTINE SG03AX( TRANS, N, A, LDA, E, LDE, X, LDX, SCALE, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X either the reduced generalized discrete-time
C Lyapunov equation
C
C T T
C A * X * A - E * X * E = SCALE * Y (1)
C
C or
C
C T T
C A * X * A - E * X * E = SCALE * Y (2)
C
C where the right hand side Y is symmetric. A, E, Y, and the
C solution X are N-by-N matrices. The pencil A - lambda * E must be
C in generalized Schur form (A upper quasitriangular, E upper
C triangular). SCALE is an output scale factor, set to avoid
C overflow in X.
C
C ARGUMENTS
C
C Mode Parameters
C
C TRANS CHARACTER*1
C Specifies whether the transposed equation is to be solved
C or not:
C = 'N': Solve equation (1);
C = 'T': Solve equation (2).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N upper Hessenberg part of this array
C must contain the quasitriangular matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C E (input) DOUBLE PRECISION array, dimension (LDE,N)
C The leading N-by-N upper triangular part of this array
C must contain the matrix E.
C
C LDE INTEGER
C The leading dimension of the array E. LDE >= MAX(1,N).
C
C X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, the leading N-by-N part of this array must
C contain the right hand side matrix Y of the equation. Only
C the upper triangular part of this matrix need be given.
C On exit, the leading N-by-N part of this array contains
C the solution matrix X of the equation.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= MAX(1,N).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor set to avoid overflow in X.
C (0 < SCALE <= 1)
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: equation is (almost) singular to working precision;
C perturbed values were used to solve the equation
C (but the matrices A and E are unchanged).
C
C METHOD
C
C The solution X of (1) or (2) is computed via block back
C substitution or block forward substitution, respectively. (See
C [1] and [2] for details.)
C
C REFERENCES
C
C [1] Bartels, R.H., Stewart, G.W.
C Solution of the equation A X + X B = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Penzl, T.
C Numerical solution of generalized Lyapunov equations.
C Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C NUMERICAL ASPECTS
C
C 8/3 * N**3 flops are required by the routine. Note that we count a
C single floating point arithmetic operation as one flop.
C
C The algorithm is backward stable if the eigenvalues of the pencil
C A - lambda * E are real. Otherwise, linear systems of order at
C most 4 are involved into the computation. These systems are solved
C by Gauss elimination with complete pivoting. The loss of stability
C of the Gauss elimination with complete pivoting is rarely
C encountered in practice.
C
C CONTRIBUTOR
C
C T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C
C REVISIONS
C
C Sep. 1998 (V. Sima).
C Dec. 1998 (V. Sima).
C
C KEYWORDS
C
C Lyapunov equation
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION MONE, ONE, ZERO
PARAMETER ( MONE = -1.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
C .. Scalar Arguments ..
CHARACTER TRANS
DOUBLE PRECISION SCALE
INTEGER INFO, LDA, LDE, LDX, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), E(LDE,*), X(LDX,*)
C .. Local Scalars ..
DOUBLE PRECISION AK11, AK12, AK21, AK22, AL11, AL12, AL21, AL22,
$ EK11, EK12, EK22, EL11, EL12, EL22, SCALE1
INTEGER DIMMAT, I, INFO1, KB, KH, KL, LB, LH, LL
LOGICAL NOTRNS
C .. Local Arrays ..
DOUBLE PRECISION MAT(4,4), RHS(4), TM(2,2)
INTEGER PIV1(4), PIV2(4)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMM, DGEMV, DSCAL, MB02UU,
$ MB02UV, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Decode input parameter.
C
NOTRNS = LSAME( TRANS, 'N' )
C
C Check the scalar input parameters.
C
IF ( .NOT.( NOTRNS .OR. LSAME( TRANS, 'T' ) ) ) THEN
INFO = -1
ELSEIF ( N .LT. 0 ) THEN
INFO = -2
ELSEIF ( LDA .LT. MAX( 1, N ) ) THEN
INFO = -4
ELSEIF ( LDE .LT. MAX( 1, N ) ) THEN
INFO = -6
ELSEIF ( LDX .LT. MAX( 1, N ) ) THEN
INFO = -8
ELSE
INFO = 0
END IF
IF ( INFO .NE. 0 ) THEN
CALL XERBLA( 'SG03AX', -INFO )
RETURN
END IF
C
SCALE = ONE
C
C Quick return if possible.
C
IF ( N .EQ. 0 ) RETURN
C
IF ( NOTRNS ) THEN
C
C Solve equation (1).
C
C Outer Loop. Compute block row X(KL:KH,:). KB denotes the number
C of rows in this block row.
C
KL = 0
KB = 1
C WHILE ( KL+KB .LE. N ) DO
20 IF ( KL+KB .LE. N ) THEN
KL = KL + KB
IF ( KL .EQ. N ) THEN
KB = 1
ELSE
IF ( A(KL+1,KL) .NE. ZERO ) THEN
KB = 2
ELSE
KB = 1
END IF
END IF
KH = KL + KB - 1
C
C Copy elements of solution already known by symmetry.
C
C X(KL:KH,1:KL-1) = X(1:KL-1,KL:KH)'
C
IF ( KL .GT. 1 ) THEN
DO 40 I = KL, KH
CALL DCOPY( KL-1, X(1,I), 1, X(I,1), LDX )
40 CONTINUE
END IF
C
C Inner Loop. Compute block X(KL:KH,LL:LH). LB denotes the
C number of columns in this block.
C
LL = KL - 1
LB = 1
C WHILE ( LL+LB .LE. N ) DO
60 IF ( LL+LB .LE. N ) THEN
LL = LL + LB
IF ( LL .EQ. N ) THEN
LB = 1
ELSE
IF ( A(LL+1,LL) .NE. ZERO ) THEN
LB = 2
ELSE
LB = 1
END IF
END IF
LH = LL + LB - 1
C
C Update right hand sides (I).
C
C X(KL:LH,LL:LH) = X(KL:LH,LL:LH) -
C A(KL:KH,KL:LH)'*(X(KL:KH,1:LL-1)*A(1:LL-1,LL:LH))
C
C X(KL:LH,LL:LH) = X(KL:LH,LL:LH) +
C E(KL:KH,KL:LH)'*(X(KL:KH,1:LL-1)*E(1:LL-1,LL:LH))
C
IF ( LL .GT. 1 ) THEN
CALL DGEMM( 'N', 'N', KB, LB, LL-1, ONE, X(KL,1), LDX,
$ A(1,LL), LDA, ZERO, TM, 2 )
CALL DGEMM( 'T', 'N', LH-KL+1, LB, KB, MONE, A(KL,KL),
$ LDA, TM, 2, ONE, X(KL,LL), LDX )
CALL DGEMM( 'N', 'N', KB, LB, LL-1, ONE, X(KL,1),
$ LDX, E(1,LL), LDE, ZERO, TM, 2 )
CALL DGEMM( 'T', 'N', LH-KH+1, LB, KB, ONE, E(KL,KH),
$ LDE, TM, 2, ONE, X(KH,LL), LDX )
IF ( KB .EQ. 2 ) CALL DAXPY( LB, E(KL,KL), TM, 2,
$ X(KL,LL), LDX )
END IF
C
C Solve small Sylvester equations of order at most (2,2).
C
IF ( KB.EQ.1 .AND. LB.EQ.1 ) THEN
C
DIMMAT = 1
C
MAT(1,1) = A(LL,LL)*A(KL,KL) - E(LL,LL)*E(KL,KL)
C
RHS(1) = X(KL,LL)
C
ELSEIF ( KB.EQ.2 .AND. LB.EQ.1 ) THEN
C
DIMMAT = 2
C
AK11 = A(KL,KL)
AK12 = A(KL,KH)
AK21 = A(KH,KL)
AK22 = A(KH,KH)
C
AL11 = A(LL,LL)
C
EK11 = E(KL,KL)
EK12 = E(KL,KH)
EK22 = E(KH,KH)
C
EL11 = E(LL,LL)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL11*AK21
MAT(2,1) = AL11*AK12 - EL11*EK12
MAT(2,2) = AL11*AK22 - EL11*EK22
C
RHS(1) = X(KL,LL)
RHS(2) = X(KH,LL)
C
ELSEIF ( KB.EQ.1 .AND. LB.EQ.2 ) THEN
C
DIMMAT = 2
C
AK11 = A(KL,KL)
C
AL11 = A(LL,LL)
AL12 = A(LL,LH)
AL21 = A(LH,LL)
AL22 = A(LH,LH)
C
EK11 = E(KL,KL)
C
EL11 = E(LL,LL)
EL12 = E(LL,LH)
EL22 = E(LH,LH)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL21*AK11
MAT(2,1) = AL12*AK11 - EL12*EK11
MAT(2,2) = AL22*AK11 - EL22*EK11
C
RHS(1) = X(KL,LL)
RHS(2) = X(KL,LH)
C
ELSE
C
DIMMAT = 4
C
AK11 = A(KL,KL)
AK12 = A(KL,KH)
AK21 = A(KH,KL)
AK22 = A(KH,KH)
C
AL11 = A(LL,LL)
AL12 = A(LL,LH)
AL21 = A(LH,LL)
AL22 = A(LH,LH)
C
EK11 = E(KL,KL)
EK12 = E(KL,KH)
EK22 = E(KH,KH)
C
EL11 = E(LL,LL)
EL12 = E(LL,LH)
EL22 = E(LH,LH)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL11*AK21
MAT(1,3) = AL21*AK11
MAT(1,4) = AL21*AK21
C
MAT(2,1) = AL11*AK12 - EL11*EK12
MAT(2,2) = AL11*AK22 - EL11*EK22
MAT(2,3) = AL21*AK12
MAT(2,4) = AL21*AK22
C
MAT(3,1) = AL12*AK11 - EL12*EK11
MAT(3,2) = AL12*AK21
MAT(3,3) = AL22*AK11 - EL22*EK11
MAT(3,4) = AL22*AK21
C
MAT(4,1) = AL12*AK12 - EL12*EK12
MAT(4,2) = AL12*AK22 - EL12*EK22
MAT(4,3) = AL22*AK12 - EL22*EK12
MAT(4,4) = AL22*AK22 - EL22*EK22
C
RHS(1) = X(KL,LL)
IF ( KL .EQ. LL ) THEN
RHS(2) = X(KL,KH)
ELSE
RHS(2) = X(KH,LL)
END IF
RHS(3) = X(KL,LH)
RHS(4) = X(KH,LH)
C
END IF
C
CALL MB02UV( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 1
CALL MB02UU( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
C
C Scaling.
C
IF ( SCALE1 .NE. ONE ) THEN
DO 80 I = 1, N
CALL DSCAL( N, SCALE1, X(1,I), 1 )
80 CONTINUE
SCALE = SCALE*SCALE1
END IF
C
IF ( LB.EQ.1 .AND. KB.EQ.1 ) THEN
X(KL,LL) = RHS(1)
ELSEIF ( LB.EQ.1 .AND. KB.EQ.2 ) THEN
X(KL,LL) = RHS(1)
X(KH,LL) = RHS(2)
ELSEIF ( LB.EQ.2 .AND. KB.EQ.1 ) THEN
X(KL,LL) = RHS(1)
X(KL,LH) = RHS(2)
ELSE
X(KL,LL) = RHS(1)
X(KH,LL) = RHS(2)
X(KL,LH) = RHS(3)
X(KH,LH) = RHS(4)
END IF
C
C Update right hand sides (II).
C
C X(KH+1:LH,LL:LH) = X(KH+1:LH,LL:LH) -
C A(KL:KH,KH+1:LH)'*(X(KL:KH,LL:LH)*A(LL:LH,LL:LH))
C
C X(KH+1:LH,LL:LH) = X(KH+1:LH,LL:LH) +
C E(KL:KH,KH+1:LH)'*(X(KL:KH,LL:LH)*E(LL:LH,LL:LH))
C
IF ( KL .LT. LL ) THEN
CALL DGEMM( 'N', 'N', KB, LB, LB, ONE, X(KL,LL), LDX,
$ A(LL,LL), LDA, ZERO, TM, 2 )
CALL DGEMM( 'T', 'N', LH-KH, LB, KB, MONE, A(KL,KH+1),
$ LDA, TM, 2, ONE, X(KH+1,LL), LDX )
IF ( LB .EQ. 2 ) THEN
CALL DCOPY( KB, X(KL,LL), 1, TM, 1 )
CALL DSCAL( KB, E(LL,LL), TM, 1 )
END IF
CALL DGEMV( 'N', KB, LB, ONE, X(KL,LL), LDX, E(LL,LH),
$ 1, ZERO, TM(1,LB), 1 )
CALL DGEMM( 'T', 'N', LH-KH, LB, KB, ONE, E(KL,KH+1),
$ LDE, TM, 2, ONE, X(KH+1,LL), LDX )
END IF
C
GOTO 60
END IF
C END WHILE 60
C
GOTO 20
END IF
C END WHILE 20
C
ELSE
C
C Solve equation (2).
C
C Outer Loop. Compute block column X(:,LL:LH). LB denotes the
C number of columns in this block column.
C
LL = N + 1
C WHILE ( LL .GT. 1 ) DO
100 IF ( LL .GT. 1 ) THEN
LH = LL - 1
IF ( LH .EQ. 1 ) THEN
LB = 1
ELSE
IF ( A(LL-1,LL-2) .NE. ZERO ) THEN
LB = 2
ELSE
LB = 1
END IF
END IF
LL = LL - LB
C
C Copy elements of solution already known by symmetry.
C
C X(LH+1:N,LL:LH) = X(LL:LH,LH+1:N)'
C
IF ( LH .LT. N ) THEN
DO 120 I = LL, LH
CALL DCOPY( N-LH, X(I,LH+1), LDX, X(LH+1,I), 1 )
120 CONTINUE
END IF
C
C Inner Loop. Compute block X(KL:KH,LL:LH). KB denotes the
C number of rows in this block.
C
KL = LH + 1
C WHILE ( KL .GT. 1 ) DO
140 IF ( KL .GT. 1 ) THEN
KH = KL - 1
IF ( KH .EQ. 1 ) THEN
KB = 1
ELSE
IF ( A(KL-1,KL-2) .NE. ZERO ) THEN
KB =2
ELSE
KB = 1
END IF
END IF
KL = KL - KB
C
C Update right hand sides (I).
C
C X(KL:KH,KL:LH) = X(KL:KH,KL:LH) -
C (A(KL:KH,KH+1:N)*X(KH+1:N,LL:LH))*A(KL:LH,LL:LH)'
C
C X(KL:KH,KL:LH) = X(KL:KH,KL:LH) +
C (E(KL:KH,KH+1:N)*X(KH+1:N,LL:LH))*E(KL:LH,LL:LH)'
C
IF ( KH .LT. N ) THEN
CALL DGEMM( 'N', 'N', KB, LB, N-KH, ONE, A(KL,KH+1),
$ LDA, X(KH+1,LL), LDX, ZERO, TM, 2 )
CALL DGEMM( 'N', 'T', KB, LH-KL+1, LB, MONE, TM, 2,
$ A(KL,LL), LDA, ONE, X(KL,KL), LDX )
CALL DGEMM( 'N', 'N', KB, LB, N-KH, ONE, E(KL,KH+1),
$ LDE, X(KH+1,LL), LDX, ZERO, TM, 2 )
CALL DGEMM( 'N', 'T', KB, LL-KL+1, LB, ONE, TM, 2,
$ E(KL,LL), LDE, ONE, X(KL,KL), LDX )
IF ( LB .EQ. 2 ) CALL DAXPY( KB, E(LH,LH), TM(1,2), 1,
$ X(KL,LH), 1 )
END IF
C
C Solve small Sylvester equations of order at most (2,2).
C
IF ( KB.EQ.1 .AND. LB.EQ.1 ) THEN
C
DIMMAT = 1
C
MAT(1,1) = A(LL,LL)*A(KL,KL) - E(LL,LL)*E(KL,KL)
C
RHS(1) = X(KL,LL)
C
ELSEIF ( KB.EQ.2 .AND. LB.EQ.1 ) THEN
C
DIMMAT = 2
C
AK11 = A(KL,KL)
AK12 = A(KL,KH)
AK21 = A(KH,KL)
AK22 = A(KH,KH)
C
AL11 = A(LL,LL)
C
EK11 = E(KL,KL)
EK12 = E(KL,KH)
EK22 = E(KH,KH)
C
EL11 = E(LL,LL)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL11*AK12 - EL11*EK12
MAT(2,1) = AL11*AK21
MAT(2,2) = AL11*AK22 - EL11*EK22
C
RHS(1) = X(KL,LL)
RHS(2) = X(KH,LL)
C
ELSEIF ( KB.EQ.1 .AND. LB.EQ.2 ) THEN
C
DIMMAT = 2
C
AK11 = A(KL,KL)
C
AL11 = A(LL,LL)
AL12 = A(LL,LH)
AL21 = A(LH,LL)
AL22 = A(LH,LH)
C
EK11 = E(KL,KL)
C
EL11 = E(LL,LL)
EL12 = E(LL,LH)
EL22 = E(LH,LH)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL12*AK11 - EL12*EK11
MAT(2,1) = AL21*AK11
MAT(2,2) = AL22*AK11 - EL22*EK11
C
RHS(1) = X(KL,LL)
RHS(2) = X(KL,LH)
C
ELSE
C
DIMMAT = 4
C
AK11 = A(KL,KL)
AK12 = A(KL,KH)
AK21 = A(KH,KL)
AK22 = A(KH,KH)
C
AL11 = A(LL,LL)
AL12 = A(LL,LH)
AL21 = A(LH,LL)
AL22 = A(LH,LH)
C
EK11 = E(KL,KL)
EK12 = E(KL,KH)
EK22 = E(KH,KH)
C
EL11 = E(LL,LL)
EL12 = E(LL,LH)
EL22 = E(LH,LH)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL11*AK12 - EL11*EK12
MAT(1,3) = AL12*AK11 - EL12*EK11
MAT(1,4) = AL12*AK12 - EL12*EK12
C
MAT(2,1) = AL11*AK21
MAT(2,2) = AL11*AK22 - EL11*EK22
MAT(2,3) = AL12*AK21
MAT(2,4) = AL12*AK22 - EL12*EK22
C
MAT(3,1) = AL21*AK11
MAT(3,2) = AL21*AK12
MAT(3,3) = AL22*AK11 - EL22*EK11
MAT(3,4) = AL22*AK12 - EL22*EK12
C
MAT(4,1) = AL21*AK21
MAT(4,2) = AL21*AK22
MAT(4,3) = AL22*AK21
MAT(4,4) = AL22*AK22 - EL22*EK22
C
RHS(1) = X(KL,LL)
IF ( KL .EQ. LL ) THEN
RHS(2) = X(KL,KH)
ELSE
RHS(2) = X(KH,LL)
END IF
RHS(3) = X(KL,LH)
RHS(4) = X(KH,LH)
C
END IF
C
CALL MB02UV( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 1
CALL MB02UU( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
C
C Scaling.
C
IF ( SCALE1 .NE. ONE ) THEN
DO 160 I = 1, N
CALL DSCAL( N, SCALE1, X(1,I), 1 )
160 CONTINUE
SCALE = SCALE*SCALE1
END IF
C
IF ( LB.EQ.1 .AND. KB.EQ.1 ) THEN
X(KL,LL) = RHS(1)
ELSEIF ( LB.EQ.1 .AND. KB.EQ.2 ) THEN
X(KL,LL) = RHS(1)
X(KH,LL) = RHS(2)
ELSEIF ( LB.EQ.2 .AND. KB.EQ.1 ) THEN
X(KL,LL) = RHS(1)
X(KL,LH) = RHS(2)
ELSE
X(KL,LL) = RHS(1)
X(KH,LL) = RHS(2)
X(KL,LH) = RHS(3)
X(KH,LH) = RHS(4)
END IF
C
C Update right hand sides (II).
C
C X(KL:KH,KL:LL-1) = X(KL:KH,KL:LL-1) -
C (A(KL:KH,KL:KH)*X(KL:KH,LL:LH))*A(KL:LL-1,LL:LH)'
C
C X(KL:KH,KL:LL-1) = X(KL:KH,KL:LL-1) +
C (E(KL:KH,KL:KH)*X(KL:KH,LL:LH))*E(KL:LL-1,LL:LH)'
C
IF ( KL .LT. LL ) THEN
CALL DGEMM( 'N', 'N', KB, LB, KB, ONE, A(KL,KL), LDA,
$ X(KL,LL), LDX, ZERO, TM, 2 )
CALL DGEMM( 'N', 'T', KB, LL-KL, LB, MONE, TM, 2,
$ A(KL,LL), LDA, ONE, X(KL,KL), LDX )
CALL DGEMV( 'T', KB, LB, ONE, X(KL,LL), LDX, E(KL,KL),
$ LDE, ZERO, TM, 2 )
IF ( KB .EQ. 2 ) THEN
CALL DCOPY( LB, X(KH,LL), LDX, TM(2,1), 2 )
CALL DSCAL( LB, E(KH,KH), TM(2,1), 2 )
END IF
CALL DGEMM( 'N', 'T', KB, LL-KL, LB, ONE, TM, 2,
$ E(KL,LL), LDE, ONE, X(KL,KL), LDX )
END IF
C
GOTO 140
END IF
C END WHILE 140
C
GOTO 100
END IF
C END WHILE 100
C
END IF
C
RETURN
C *** Last line of SG03AX ***
END
|