File: SG03AX.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (687 lines) | stat: -rw-r--r-- 21,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
      SUBROUTINE SG03AX( TRANS, N, A, LDA, E, LDE, X, LDX, SCALE, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To solve for X either the reduced generalized discrete-time
C     Lyapunov equation
C
C         T            T
C        A  * X * A - E  * X * E  =  SCALE * Y                       (1)
C
C     or
C
C                 T            T
C        A * X * A  - E * X * E   =  SCALE * Y                       (2)
C
C     where the right hand side Y is symmetric. A, E, Y, and the
C     solution X are N-by-N matrices. The pencil A - lambda * E must be
C     in generalized Schur form (A upper quasitriangular, E upper
C     triangular). SCALE is an output scale factor, set to avoid
C     overflow in X.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRANS   CHARACTER*1
C             Specifies whether the transposed equation is to be solved
C             or not:
C             = 'N':  Solve equation (1);
C             = 'T':  Solve equation (2).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N upper Hessenberg part of this array
C             must contain the quasitriangular matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     E       (input) DOUBLE PRECISION array, dimension (LDE,N)
C             The leading N-by-N upper triangular part of this array
C             must contain the matrix E.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     X       (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C             On entry, the leading N-by-N part of this array must
C             contain the right hand side matrix Y of the equation. Only
C             the upper triangular part of this matrix need be given.
C             On exit, the leading N-by-N part of this array contains
C             the solution matrix X of the equation.
C
C     LDX     INTEGER
C             The leading dimension of the array X.  LDX >= MAX(1,N).
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor set to avoid overflow in X.
C             (0 < SCALE <= 1)
C
C     Error indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  equation is (almost) singular to working precision;
C                   perturbed values were used to solve the equation
C                   (but the matrices A and E are unchanged).
C
C     METHOD
C
C     The solution X of (1) or (2) is computed via block back
C     substitution or block forward substitution, respectively. (See
C     [1] and [2] for details.)
C
C     REFERENCES
C
C     [1] Bartels, R.H., Stewart, G.W.
C         Solution of the equation A X + X B = C.
C         Comm. A.C.M., 15, pp. 820-826, 1972.
C
C     [2] Penzl, T.
C         Numerical solution of generalized Lyapunov equations.
C         Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C     NUMERICAL ASPECTS
C
C     8/3 * N**3 flops are required by the routine. Note that we count a
C     single floating point arithmetic operation as one flop.
C
C     The algorithm is backward stable if the eigenvalues of the pencil
C     A - lambda * E are real. Otherwise, linear systems of order at
C     most 4 are involved into the computation. These systems are solved
C     by Gauss elimination with complete pivoting. The loss of stability
C     of the Gauss elimination with complete pivoting is rarely
C     encountered in practice.
C
C     CONTRIBUTOR
C
C     T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C
C     REVISIONS
C
C     Sep. 1998 (V. Sima).
C     Dec. 1998 (V. Sima).
C
C     KEYWORDS
C
C     Lyapunov equation
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  MONE, ONE, ZERO
      PARAMETER         ( MONE = -1.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
C     .. Scalar Arguments ..
      CHARACTER         TRANS
      DOUBLE PRECISION  SCALE
      INTEGER           INFO, LDA, LDE, LDX, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), E(LDE,*), X(LDX,*)
C     .. Local Scalars ..
      DOUBLE PRECISION  AK11, AK12, AK21, AK22, AL11, AL12, AL21, AL22,
     $                  EK11, EK12, EK22, EL11, EL12, EL22, SCALE1
      INTEGER           DIMMAT, I, INFO1, KB, KH, KL, LB, LH, LL
      LOGICAL           NOTRNS
C     .. Local Arrays ..
      DOUBLE PRECISION  MAT(4,4), RHS(4), TM(2,2)
      INTEGER           PIV1(4), PIV2(4)
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMM, DGEMV, DSCAL, MB02UU,
     $                  MB02UV, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C     .. Executable Statements ..
C
C     Decode input parameter.
C
      NOTRNS = LSAME( TRANS, 'N' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( NOTRNS .OR. LSAME( TRANS, 'T' ) ) ) THEN
         INFO = -1
      ELSEIF ( N .LT. 0 ) THEN
         INFO = -2
      ELSEIF ( LDA .LT. MAX( 1, N ) ) THEN
         INFO = -4
      ELSEIF ( LDE .LT. MAX( 1, N ) ) THEN
         INFO = -6
      ELSEIF ( LDX .LT. MAX( 1, N ) ) THEN
         INFO = -8
      ELSE
         INFO = 0
      END IF
      IF ( INFO .NE. 0 ) THEN
         CALL XERBLA( 'SG03AX', -INFO )
         RETURN
      END IF
C
      SCALE = ONE
C
C     Quick return if possible.
C
      IF ( N .EQ. 0 ) RETURN
C
      IF ( NOTRNS ) THEN
C
C        Solve equation (1).
C
C        Outer Loop. Compute block row X(KL:KH,:). KB denotes the number
C        of rows in this block row.
C
         KL = 0
         KB = 1
C        WHILE ( KL+KB .LE. N ) DO
   20    IF ( KL+KB .LE. N ) THEN
            KL = KL + KB
            IF ( KL .EQ. N ) THEN
               KB = 1
            ELSE
               IF ( A(KL+1,KL) .NE. ZERO ) THEN
                  KB = 2
               ELSE
                  KB = 1
               END IF
            END IF
            KH = KL + KB - 1
C
C           Copy elements of solution already known by symmetry.
C
C              X(KL:KH,1:KL-1) = X(1:KL-1,KL:KH)'
C
            IF ( KL .GT. 1 ) THEN
               DO 40 I = KL, KH
                  CALL DCOPY( KL-1, X(1,I), 1, X(I,1), LDX )
   40          CONTINUE
            END IF
C
C           Inner Loop. Compute block X(KL:KH,LL:LH). LB denotes the
C           number of columns in this block.
C
            LL = KL - 1
            LB = 1
C           WHILE ( LL+LB .LE. N ) DO
   60       IF ( LL+LB .LE. N ) THEN
               LL = LL + LB
               IF ( LL .EQ. N ) THEN
                  LB = 1
               ELSE
                  IF ( A(LL+1,LL) .NE. ZERO ) THEN
                     LB = 2
                  ELSE
                     LB = 1
                  END IF
               END IF
               LH = LL + LB - 1
C
C              Update right hand sides (I).
C
C                 X(KL:LH,LL:LH) = X(KL:LH,LL:LH) -
C                    A(KL:KH,KL:LH)'*(X(KL:KH,1:LL-1)*A(1:LL-1,LL:LH))
C
C                 X(KL:LH,LL:LH) = X(KL:LH,LL:LH) +
C                    E(KL:KH,KL:LH)'*(X(KL:KH,1:LL-1)*E(1:LL-1,LL:LH))
C
               IF ( LL .GT. 1 ) THEN
                  CALL DGEMM( 'N', 'N', KB, LB, LL-1, ONE, X(KL,1), LDX,
     $                        A(1,LL), LDA, ZERO, TM, 2 )
                  CALL DGEMM( 'T', 'N', LH-KL+1, LB, KB, MONE, A(KL,KL),
     $                        LDA, TM, 2, ONE, X(KL,LL), LDX )
                  CALL DGEMM( 'N', 'N', KB, LB, LL-1, ONE, X(KL,1),
     $                        LDX, E(1,LL), LDE, ZERO, TM, 2 )
                  CALL DGEMM( 'T', 'N', LH-KH+1, LB, KB, ONE, E(KL,KH),
     $                        LDE, TM, 2, ONE, X(KH,LL), LDX )
                  IF ( KB .EQ. 2 ) CALL DAXPY( LB, E(KL,KL), TM, 2,
     $                                         X(KL,LL), LDX )
               END IF
C
C              Solve small Sylvester equations of order at most (2,2).
C
               IF ( KB.EQ.1 .AND. LB.EQ.1 ) THEN
C
                  DIMMAT = 1
C
                  MAT(1,1) = A(LL,LL)*A(KL,KL) - E(LL,LL)*E(KL,KL)
C
                  RHS(1) = X(KL,LL)
C
               ELSEIF ( KB.EQ.2 .AND. LB.EQ.1 ) THEN
C
                  DIMMAT = 2
C
                  AK11 = A(KL,KL)
                  AK12 = A(KL,KH)
                  AK21 = A(KH,KL)
                  AK22 = A(KH,KH)
C
                  AL11 = A(LL,LL)
C
                  EK11 = E(KL,KL)
                  EK12 = E(KL,KH)
                  EK22 = E(KH,KH)
C
                  EL11 = E(LL,LL)
C
                  MAT(1,1) = AL11*AK11 - EL11*EK11
                  MAT(1,2) = AL11*AK21
                  MAT(2,1) = AL11*AK12 - EL11*EK12
                  MAT(2,2) = AL11*AK22 - EL11*EK22
C
                  RHS(1) = X(KL,LL)
                  RHS(2) = X(KH,LL)
C
               ELSEIF ( KB.EQ.1 .AND. LB.EQ.2 ) THEN
C
                  DIMMAT = 2
C
                  AK11 = A(KL,KL)
C
                  AL11 = A(LL,LL)
                  AL12 = A(LL,LH)
                  AL21 = A(LH,LL)
                  AL22 = A(LH,LH)
C
                  EK11 = E(KL,KL)
C
                  EL11 = E(LL,LL)
                  EL12 = E(LL,LH)
                  EL22 = E(LH,LH)
C
                  MAT(1,1) = AL11*AK11 - EL11*EK11
                  MAT(1,2) = AL21*AK11
                  MAT(2,1) = AL12*AK11 - EL12*EK11
                  MAT(2,2) = AL22*AK11 - EL22*EK11
C
                  RHS(1) = X(KL,LL)
                  RHS(2) = X(KL,LH)
C
               ELSE
C
                  DIMMAT = 4
C
                  AK11 = A(KL,KL)
                  AK12 = A(KL,KH)
                  AK21 = A(KH,KL)
                  AK22 = A(KH,KH)
C
                  AL11 = A(LL,LL)
                  AL12 = A(LL,LH)
                  AL21 = A(LH,LL)
                  AL22 = A(LH,LH)
C
                  EK11 = E(KL,KL)
                  EK12 = E(KL,KH)
                  EK22 = E(KH,KH)
C
                  EL11 = E(LL,LL)
                  EL12 = E(LL,LH)
                  EL22 = E(LH,LH)
C
                  MAT(1,1) = AL11*AK11 - EL11*EK11
                  MAT(1,2) = AL11*AK21
                  MAT(1,3) = AL21*AK11
                  MAT(1,4) = AL21*AK21
C
                  MAT(2,1) = AL11*AK12 - EL11*EK12
                  MAT(2,2) = AL11*AK22 - EL11*EK22
                  MAT(2,3) = AL21*AK12
                  MAT(2,4) = AL21*AK22
C
                  MAT(3,1) = AL12*AK11 - EL12*EK11
                  MAT(3,2) = AL12*AK21
                  MAT(3,3) = AL22*AK11 - EL22*EK11
                  MAT(3,4) = AL22*AK21
C
                  MAT(4,1) = AL12*AK12 - EL12*EK12
                  MAT(4,2) = AL12*AK22 - EL12*EK22
                  MAT(4,3) = AL22*AK12 - EL22*EK12
                  MAT(4,4) = AL22*AK22 - EL22*EK22
C
                  RHS(1) = X(KL,LL)
                  IF ( KL .EQ. LL ) THEN
                     RHS(2) = X(KL,KH)
                  ELSE
                     RHS(2) = X(KH,LL)
                  END IF
                  RHS(3) = X(KL,LH)
                  RHS(4) = X(KH,LH)
C
               END IF
C
               CALL MB02UV( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
               IF ( INFO1 .NE. 0 )
     $            INFO = 1
               CALL MB02UU( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
C
C              Scaling.
C
               IF ( SCALE1 .NE. ONE ) THEN
                  DO 80 I = 1, N
                     CALL DSCAL( N, SCALE1, X(1,I), 1 )
   80             CONTINUE
                  SCALE = SCALE*SCALE1
               END IF
C
               IF ( LB.EQ.1 .AND. KB.EQ.1 ) THEN
                  X(KL,LL) = RHS(1)
               ELSEIF ( LB.EQ.1 .AND. KB.EQ.2 ) THEN
                  X(KL,LL) = RHS(1)
                  X(KH,LL) = RHS(2)
               ELSEIF ( LB.EQ.2 .AND. KB.EQ.1 ) THEN
                  X(KL,LL) = RHS(1)
                  X(KL,LH) = RHS(2)
               ELSE
                  X(KL,LL) = RHS(1)
                  X(KH,LL) = RHS(2)
                  X(KL,LH) = RHS(3)
                  X(KH,LH) = RHS(4)
               END IF
C
C              Update right hand sides (II).
C
C              X(KH+1:LH,LL:LH) = X(KH+1:LH,LL:LH) -
C                 A(KL:KH,KH+1:LH)'*(X(KL:KH,LL:LH)*A(LL:LH,LL:LH))
C
C              X(KH+1:LH,LL:LH) = X(KH+1:LH,LL:LH) +
C                 E(KL:KH,KH+1:LH)'*(X(KL:KH,LL:LH)*E(LL:LH,LL:LH))
C
               IF ( KL .LT. LL ) THEN
                  CALL DGEMM( 'N', 'N', KB, LB, LB, ONE, X(KL,LL), LDX,
     $                        A(LL,LL), LDA, ZERO, TM, 2 )
                  CALL DGEMM( 'T', 'N', LH-KH, LB, KB, MONE, A(KL,KH+1),
     $                        LDA, TM, 2, ONE, X(KH+1,LL), LDX )
                  IF ( LB .EQ. 2 ) THEN
                     CALL DCOPY( KB, X(KL,LL), 1, TM, 1 )
                     CALL DSCAL( KB, E(LL,LL), TM, 1 )
                  END IF
                  CALL DGEMV( 'N', KB, LB, ONE, X(KL,LL), LDX, E(LL,LH),
     $                        1, ZERO, TM(1,LB), 1 )
                  CALL DGEMM( 'T', 'N', LH-KH, LB, KB, ONE, E(KL,KH+1),
     $                        LDE, TM, 2, ONE, X(KH+1,LL), LDX )
               END IF
C
            GOTO 60
            END IF
C           END WHILE 60
C
         GOTO 20
         END IF
C        END WHILE 20
C
      ELSE
C
C        Solve equation (2).
C
C        Outer Loop. Compute block column X(:,LL:LH). LB denotes the
C        number of columns in this block column.
C
         LL = N + 1
C        WHILE ( LL .GT. 1 ) DO
  100    IF ( LL .GT. 1 ) THEN
            LH = LL - 1
            IF ( LH .EQ. 1 ) THEN
               LB = 1
            ELSE
               IF ( A(LL-1,LL-2) .NE. ZERO ) THEN
                  LB = 2
               ELSE
                  LB = 1
               END IF
            END IF
            LL = LL - LB
C
C           Copy elements of solution already known by symmetry.
C
C              X(LH+1:N,LL:LH) = X(LL:LH,LH+1:N)'
C
            IF ( LH .LT. N ) THEN
               DO 120 I = LL, LH
                  CALL DCOPY( N-LH, X(I,LH+1), LDX, X(LH+1,I), 1 )
  120          CONTINUE
            END IF
C
C           Inner Loop. Compute block X(KL:KH,LL:LH). KB denotes the
C           number of rows in this block.
C
            KL = LH + 1
C           WHILE ( KL .GT. 1 ) DO
  140       IF ( KL .GT. 1 ) THEN
               KH = KL - 1
               IF ( KH .EQ. 1 ) THEN
                  KB = 1
               ELSE
                  IF ( A(KL-1,KL-2) .NE. ZERO ) THEN
                     KB =2
                  ELSE
                     KB = 1
                  END IF
               END IF
               KL = KL - KB
C
C              Update right hand sides (I).
C
C                 X(KL:KH,KL:LH) = X(KL:KH,KL:LH) -
C                    (A(KL:KH,KH+1:N)*X(KH+1:N,LL:LH))*A(KL:LH,LL:LH)'
C
C                 X(KL:KH,KL:LH) = X(KL:KH,KL:LH) +
C                    (E(KL:KH,KH+1:N)*X(KH+1:N,LL:LH))*E(KL:LH,LL:LH)'
C
               IF ( KH .LT. N ) THEN
                  CALL DGEMM( 'N', 'N', KB, LB, N-KH, ONE, A(KL,KH+1),
     $                        LDA, X(KH+1,LL), LDX, ZERO, TM, 2 )
                  CALL DGEMM( 'N', 'T', KB, LH-KL+1, LB, MONE, TM, 2,
     $                        A(KL,LL), LDA, ONE, X(KL,KL), LDX )
                  CALL DGEMM( 'N', 'N', KB, LB, N-KH, ONE, E(KL,KH+1),
     $                        LDE, X(KH+1,LL), LDX, ZERO, TM, 2 )
                  CALL DGEMM( 'N', 'T', KB, LL-KL+1, LB, ONE, TM, 2,
     $                        E(KL,LL), LDE, ONE, X(KL,KL), LDX )
                  IF ( LB .EQ. 2 ) CALL DAXPY( KB, E(LH,LH), TM(1,2), 1,
     $                                         X(KL,LH), 1 )
               END IF
C
C              Solve small Sylvester equations of order at most (2,2).
C
               IF ( KB.EQ.1 .AND. LB.EQ.1 ) THEN
C
                  DIMMAT = 1
C
                  MAT(1,1) = A(LL,LL)*A(KL,KL) - E(LL,LL)*E(KL,KL)
C
                  RHS(1) = X(KL,LL)
C
               ELSEIF ( KB.EQ.2 .AND. LB.EQ.1 ) THEN
C
                  DIMMAT = 2
C
                  AK11 = A(KL,KL)
                  AK12 = A(KL,KH)
                  AK21 = A(KH,KL)
                  AK22 = A(KH,KH)
C
                  AL11 = A(LL,LL)
C
                  EK11 = E(KL,KL)
                  EK12 = E(KL,KH)
                  EK22 = E(KH,KH)
C
                  EL11 = E(LL,LL)
C
                  MAT(1,1) = AL11*AK11 - EL11*EK11
                  MAT(1,2) = AL11*AK12 - EL11*EK12
                  MAT(2,1) = AL11*AK21
                  MAT(2,2) = AL11*AK22 - EL11*EK22
C
                  RHS(1) = X(KL,LL)
                  RHS(2) = X(KH,LL)
C
               ELSEIF ( KB.EQ.1 .AND. LB.EQ.2 ) THEN
C
                  DIMMAT = 2
C
                  AK11 = A(KL,KL)
C
                  AL11 = A(LL,LL)
                  AL12 = A(LL,LH)
                  AL21 = A(LH,LL)
                  AL22 = A(LH,LH)
C
                  EK11 = E(KL,KL)
C
                  EL11 = E(LL,LL)
                  EL12 = E(LL,LH)
                  EL22 = E(LH,LH)
C
                  MAT(1,1) = AL11*AK11 - EL11*EK11
                  MAT(1,2) = AL12*AK11 - EL12*EK11
                  MAT(2,1) = AL21*AK11
                  MAT(2,2) = AL22*AK11 - EL22*EK11
C
                  RHS(1) = X(KL,LL)
                  RHS(2) = X(KL,LH)
C
               ELSE
C
                  DIMMAT = 4
C
                  AK11 = A(KL,KL)
                  AK12 = A(KL,KH)
                  AK21 = A(KH,KL)
                  AK22 = A(KH,KH)
C
                  AL11 = A(LL,LL)
                  AL12 = A(LL,LH)
                  AL21 = A(LH,LL)
                  AL22 = A(LH,LH)
C
                  EK11 = E(KL,KL)
                  EK12 = E(KL,KH)
                  EK22 = E(KH,KH)
C
                  EL11 = E(LL,LL)
                  EL12 = E(LL,LH)
                  EL22 = E(LH,LH)
C
                  MAT(1,1) = AL11*AK11 - EL11*EK11
                  MAT(1,2) = AL11*AK12 - EL11*EK12
                  MAT(1,3) = AL12*AK11 - EL12*EK11
                  MAT(1,4) = AL12*AK12 - EL12*EK12
C
                  MAT(2,1) = AL11*AK21
                  MAT(2,2) = AL11*AK22 - EL11*EK22
                  MAT(2,3) = AL12*AK21
                  MAT(2,4) = AL12*AK22 - EL12*EK22
C
                  MAT(3,1) = AL21*AK11
                  MAT(3,2) = AL21*AK12
                  MAT(3,3) = AL22*AK11 - EL22*EK11
                  MAT(3,4) = AL22*AK12 - EL22*EK12
C
                  MAT(4,1) = AL21*AK21
                  MAT(4,2) = AL21*AK22
                  MAT(4,3) = AL22*AK21
                  MAT(4,4) = AL22*AK22 - EL22*EK22
C
                  RHS(1) = X(KL,LL)
                  IF ( KL .EQ. LL ) THEN
                     RHS(2) = X(KL,KH)
                  ELSE
                     RHS(2) = X(KH,LL)
                  END IF
                  RHS(3) = X(KL,LH)
                  RHS(4) = X(KH,LH)
C
               END IF
C
               CALL MB02UV( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
               IF ( INFO1 .NE. 0 )
     $            INFO = 1
               CALL MB02UU( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
C
C              Scaling.
C
               IF ( SCALE1 .NE. ONE ) THEN
                  DO 160 I = 1, N
                     CALL DSCAL( N, SCALE1, X(1,I), 1 )
  160             CONTINUE
                  SCALE = SCALE*SCALE1
               END IF
C
               IF ( LB.EQ.1 .AND. KB.EQ.1 ) THEN
                  X(KL,LL) = RHS(1)
               ELSEIF ( LB.EQ.1 .AND. KB.EQ.2 ) THEN
                  X(KL,LL) = RHS(1)
                  X(KH,LL) = RHS(2)
               ELSEIF ( LB.EQ.2 .AND. KB.EQ.1 ) THEN
                  X(KL,LL) = RHS(1)
                  X(KL,LH) = RHS(2)
               ELSE
                  X(KL,LL) = RHS(1)
                  X(KH,LL) = RHS(2)
                  X(KL,LH) = RHS(3)
                  X(KH,LH) = RHS(4)
               END IF
C
C              Update right hand sides (II).
C
C                 X(KL:KH,KL:LL-1) = X(KL:KH,KL:LL-1) -
C                    (A(KL:KH,KL:KH)*X(KL:KH,LL:LH))*A(KL:LL-1,LL:LH)'
C
C                 X(KL:KH,KL:LL-1) = X(KL:KH,KL:LL-1) +
C                    (E(KL:KH,KL:KH)*X(KL:KH,LL:LH))*E(KL:LL-1,LL:LH)'
C
               IF ( KL .LT. LL ) THEN
                  CALL DGEMM( 'N', 'N', KB, LB, KB, ONE, A(KL,KL), LDA,
     $                        X(KL,LL), LDX, ZERO, TM, 2 )
                  CALL DGEMM( 'N', 'T', KB, LL-KL, LB, MONE, TM, 2,
     $                        A(KL,LL), LDA, ONE, X(KL,KL), LDX )
                  CALL DGEMV( 'T', KB, LB, ONE, X(KL,LL), LDX, E(KL,KL),
     $                        LDE, ZERO, TM, 2 )
                  IF ( KB .EQ. 2 ) THEN
                     CALL DCOPY( LB, X(KH,LL), LDX, TM(2,1), 2 )
                     CALL DSCAL( LB, E(KH,KH), TM(2,1), 2 )
                  END IF
                  CALL DGEMM( 'N', 'T', KB, LL-KL, LB, ONE, TM, 2,
     $                        E(KL,LL), LDE, ONE, X(KL,KL), LDX )
               END IF
C
            GOTO 140
            END IF
C           END WHILE 140
C
         GOTO 100
         END IF
C        END WHILE 100
C
      END IF
C
      RETURN
C *** Last line of SG03AX ***
      END