1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
|
SUBROUTINE SG03BD( DICO, FACT, TRANS, N, M, A, LDA, E, LDE, Q,
$ LDQ, Z, LDZ, B, LDB, SCALE, ALPHAR, ALPHAI,
$ BETA, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the Cholesky factor U of the matrix X,
C
C T
C X = op(U) * op(U),
C
C which is the solution of either the generalized
C c-stable continuous-time Lyapunov equation
C
C T T
C op(A) * X * op(E) + op(E) * X * op(A)
C
C 2 T
C = - SCALE * op(B) * op(B), (1)
C
C or the generalized d-stable discrete-time Lyapunov equation
C
C T T
C op(A) * X * op(A) - op(E) * X * op(E)
C
C 2 T
C = - SCALE * op(B) * op(B), (2)
C
C without first finding X and without the need to form the matrix
C op(B)**T * op(B).
C
C op(K) is either K or K**T for K = A, B, E, U. A and E are N-by-N
C matrices, op(B) is an M-by-N matrix. The resulting matrix U is an
C N-by-N upper triangular matrix with non-negative entries on its
C main diagonal. SCALE is an output scale factor set to avoid
C overflow in U.
C
C In the continuous-time case (1) the pencil A - lambda * E must be
C c-stable (that is, all eigenvalues must have negative real parts).
C In the discrete-time case (2) the pencil A - lambda * E must be
C d-stable (that is, the moduli of all eigenvalues must be smaller
C than one).
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies which type of the equation is considered:
C = 'C': Continuous-time equation (1);
C = 'D': Discrete-time equation (2).
C
C FACT CHARACTER*1
C Specifies whether the generalized real Schur
C factorization of the pencil A - lambda * E is supplied
C on entry or not:
C = 'N': Factorization is not supplied;
C = 'F': Factorization is supplied.
C
C TRANS CHARACTER*1
C Specifies whether the transposed equation is to be solved
C or not:
C = 'N': op(A) = A, op(E) = E;
C = 'T': op(A) = A**T, op(E) = E**T.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of rows in the matrix op(B). M >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, if FACT = 'F', then the leading N-by-N upper
C Hessenberg part of this array must contain the
C generalized Schur factor A_s of the matrix A (see
C definition (3) in section METHOD). A_s must be an upper
C quasitriangular matrix. The elements below the upper
C Hessenberg part of the array A are not referenced.
C If FACT = 'N', then the leading N-by-N part of this
C array must contain the matrix A.
C On exit, the leading N-by-N part of this array contains
C the generalized Schur factor A_s of the matrix A. (A_s is
C an upper quasitriangular matrix.)
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, if FACT = 'F', then the leading N-by-N upper
C triangular part of this array must contain the
C generalized Schur factor E_s of the matrix E (see
C definition (4) in section METHOD). The elements below the
C upper triangular part of the array E are not referenced.
C If FACT = 'N', then the leading N-by-N part of this
C array must contain the coefficient matrix E of the
C equation.
C On exit, the leading N-by-N part of this array contains
C the generalized Schur factor E_s of the matrix E. (E_s is
C an upper triangular matrix.)
C
C LDE INTEGER
C The leading dimension of the array E. LDE >= MAX(1,N).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C On entry, if FACT = 'F', then the leading N-by-N part of
C this array must contain the orthogonal matrix Q from
C the generalized Schur factorization (see definitions (3)
C and (4) in section METHOD).
C If FACT = 'N', Q need not be set on entry.
C On exit, the leading N-by-N part of this array contains
C the orthogonal matrix Q from the generalized Schur
C factorization.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= MAX(1,N).
C
C Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C On entry, if FACT = 'F', then the leading N-by-N part of
C this array must contain the orthogonal matrix Z from
C the generalized Schur factorization (see definitions (3)
C and (4) in section METHOD).
C If FACT = 'N', Z need not be set on entry.
C On exit, the leading N-by-N part of this array contains
C the orthogonal matrix Z from the generalized Schur
C factorization.
C
C LDZ INTEGER
C The leading dimension of the array Z. LDZ >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N1)
C On entry, if TRANS = 'T', the leading N-by-M part of this
C array must contain the matrix B and N1 >= MAX(M,N).
C If TRANS = 'N', the leading M-by-N part of this array
C must contain the matrix B and N1 >= N.
C On exit, the leading N-by-N part of this array contains
C the Cholesky factor U of the solution matrix X of the
C problem, X = op(U)**T * op(U).
C If M = 0 and N > 0, then U is set to zero.
C
C LDB INTEGER
C The leading dimension of the array B.
C If TRANS = 'T', LDB >= MAX(1,N).
C If TRANS = 'N', LDB >= MAX(1,M,N).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor set to avoid overflow in U.
C 0 < SCALE <= 1.
C
C ALPHAR (output) DOUBLE PRECISION array, dimension (N)
C ALPHAI (output) DOUBLE PRECISION array, dimension (N)
C BETA (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, 3, 5, 6, or 7, then
C (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, are the
C eigenvalues of the matrix pencil A - lambda * E.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= MAX(1,4*N,6*N-6), if FACT = 'N';
C LDWORK >= MAX(1,2*N,6*N-6), if FACT = 'F'.
C For good performance, LDWORK should be larger.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the pencil A - lambda * E is (nearly) singular;
C perturbed values were used to solve the equation
C (but the reduced (quasi)triangular matrices A and E
C are unchanged);
C = 2: FACT = 'F' and the matrix contained in the upper
C Hessenberg part of the array A is not in upper
C quasitriangular form;
C = 3: FACT = 'F' and there is a 2-by-2 block on the main
C diagonal of the pencil A_s - lambda * E_s whose
C eigenvalues are not conjugate complex;
C = 4: FACT = 'N' and the pencil A - lambda * E cannot be
C reduced to generalized Schur form: LAPACK routine
C DGEGS has failed to converge;
C = 5: DICO = 'C' and the pencil A - lambda * E is not
C c-stable;
C = 6: DICO = 'D' and the pencil A - lambda * E is not
C d-stable;
C = 7: the LAPACK routine DSYEVX utilized to factorize M3
C failed to converge in the discrete-time case (see
C section METHOD for SLICOT Library routine SG03BU).
C This error is unlikely to occur.
C
C METHOD
C
C An extension [2] of Hammarling's method [1] to generalized
C Lyapunov equations is utilized to solve (1) or (2).
C
C First the pencil A - lambda * E is reduced to real generalized
C Schur form A_s - lambda * E_s by means of orthogonal
C transformations (QZ-algorithm):
C
C A_s = Q**T * A * Z (upper quasitriangular) (3)
C
C E_s = Q**T * E * Z (upper triangular). (4)
C
C If the pencil A - lambda * E has already been factorized prior to
C calling the routine however, then the factors A_s, E_s, Q and Z
C may be supplied and the initial factorization omitted.
C
C Depending on the parameters TRANS and M the N-by-N upper
C triangular matrix B_s is defined as follows. In any case Q_B is
C an M-by-M orthogonal matrix, which need not be accumulated.
C
C 1. If TRANS = 'N' and M < N, B_s is the upper triangular matrix
C from the QR-factorization
C
C ( Q_B O ) ( B * Z )
C ( ) * B_s = ( ),
C ( O I ) ( O )
C
C where the O's are zero matrices of proper size and I is the
C identity matrix of order N-M.
C
C 2. If TRANS = 'N' and M >= N, B_s is the upper triangular matrix
C from the (rectangular) QR-factorization
C
C ( B_s )
C Q_B * ( ) = B * Z,
C ( O )
C
C where O is the (M-N)-by-N zero matrix.
C
C 3. If TRANS = 'T' and M < N, B_s is the upper triangular matrix
C from the RQ-factorization
C
C ( Q_B O )
C (B_s O ) * ( ) = ( Q**T * B O ).
C ( O I )
C
C 4. If TRANS = 'T' and M >= N, B_s is the upper triangular matrix
C from the (rectangular) RQ-factorization
C
C ( B_s O ) * Q_B = Q**T * B,
C
C where O is the N-by-(M-N) zero matrix.
C
C Assuming SCALE = 1, the transformation of A, E and B described
C above leads to the reduced continuous-time equation
C
C T T
C op(A_s) op(U_s) op(U_s) op(E_s)
C
C T T
C + op(E_s) op(U_s) op(U_s) op(A_s)
C
C T
C = - op(B_s) op(B_s) (5)
C
C or to the reduced discrete-time equation
C
C T T
C op(A_s) op(U_s) op(U_s) op(A_s)
C
C T T
C - op(E_s) op(U_s) op(U_s) op(E_s)
C
C T
C = - op(B_s) op(B_s). (6)
C
C For brevity we restrict ourself to equation (5) and the case
C TRANS = 'N'. The other three cases can be treated in a similar
C fashion.
C
C We use the following partitioning for the matrices A_s, E_s, B_s
C and U_s
C
C ( A11 A12 ) ( E11 E12 )
C A_s = ( ), E_s = ( ),
C ( 0 A22 ) ( 0 E22 )
C
C ( B11 B12 ) ( U11 U12 )
C B_s = ( ), U_s = ( ). (7)
C ( 0 B22 ) ( 0 U22 )
C
C The size of the (1,1)-blocks is 1-by-1 (iff A_s(2,1) = 0.0) or
C 2-by-2.
C
C We compute U11 and U12**T in three steps.
C
C Step I:
C
C From (5) and (7) we get the 1-by-1 or 2-by-2 equation
C
C T T T T
C A11 * U11 * U11 * E11 + E11 * U11 * U11 * A11
C
C T
C = - B11 * B11.
C
C For brevity, details are omitted here. See [2]. The technique
C for computing U11 is similar to those applied to standard
C Lyapunov equations in Hammarling's algorithm ([1], section 6).
C
C Furthermore, the auxiliary matrices M1 and M2 defined as
C follows
C
C -1 -1
C M1 = U11 * A11 * E11 * U11
C
C -1 -1
C M2 = B11 * E11 * U11
C
C are computed in a numerically reliable way.
C
C Step II:
C
C The generalized Sylvester equation
C
C T T T T
C A22 * U12 + E22 * U12 * M1 =
C
C T T T T T
C - B12 * M2 - A12 * U11 - E12 * U11 * M1
C
C is solved for U12**T.
C
C Step III:
C
C It can be shown that
C
C T T T T
C A22 * U22 * U22 * E22 + E22 * U22 * U22 * A22 =
C
C T T
C - B22 * B22 - y * y (8)
C
C holds, where y is defined as
C
C T T T T T T
C y = B12 - ( E12 * U11 + E22 * U12 ) * M2 .
C
C If B22_tilde is the square triangular matrix arising from the
C (rectangular) QR-factorization
C
C ( B22_tilde ) ( B22 )
C Q_B_tilde * ( ) = ( ),
C ( O ) ( y**T )
C
C where Q_B_tilde is an orthogonal matrix of order N, then
C
C T T T
C - B22 * B22 - y * y = - B22_tilde * B22_tilde.
C
C Replacing the right hand side in (8) by the term
C - B22_tilde**T * B22_tilde leads to a reduced generalized
C Lyapunov equation of lower dimension compared to (5).
C
C The recursive application of the steps I to III yields the
C solution U_s of the equation (5).
C
C It remains to compute the solution matrix U of the original
C problem (1) or (2) from the matrix U_s. To this end we transform
C the solution back (with respect to the transformation that led
C from (1) to (5) (from (2) to (6)) and apply the QR-factorization
C (RQ-factorization). The upper triangular solution matrix U is
C obtained by
C
C Q_U * U = U_s * Q**T (if TRANS = 'N')
C
C or
C
C U * Q_U = Z * U_s (if TRANS = 'T')
C
C where Q_U is an N-by-N orthogonal matrix. Again, the orthogonal
C matrix Q_U need not be accumulated.
C
C REFERENCES
C
C [1] Hammarling, S.J.
C Numerical solution of the stable, non-negative definite
C Lyapunov equation.
C IMA J. Num. Anal., 2, pp. 303-323, 1982.
C
C [2] Penzl, T.
C Numerical solution of generalized Lyapunov equations.
C Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C NUMERICAL ASPECTS
C
C The number of flops required by the routine is given by the
C following table. Note that we count a single floating point
C arithmetic operation as one flop.
C
C | FACT = 'F' FACT = 'N'
C ---------+--------------------------------------------------
C M <= N | (13*N**3+6*M*N**2 (211*N**3+6*M*N**2
C | +6*M**2*N-2*M**3)/3 +6*M**2*N-2*M**3)/3
C |
C M > N | (11*N**3+12*M*N**2)/3 (209*N**3+12*M*N**2)/3
C
C FURTHER COMMENTS
C
C The Lyapunov equation may be very ill-conditioned. In particular,
C if DICO = 'D' and the pencil A - lambda * E has a pair of almost
C reciprocal eigenvalues, or DICO = 'C' and the pencil has an almost
C degenerate pair of eigenvalues, then the Lyapunov equation will be
C ill-conditioned. Perturbed values were used to solve the equation.
C A condition estimate can be obtained from the routine SG03AD.
C When setting the error indicator INFO, the routine does not test
C for near instability in the equation but only for exact
C instability.
C
C CONTRIBUTOR
C
C T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C
C REVISIONS
C
C Sep. 1998 (V. Sima).
C May 1999 (V. Sima).
C March 2002 (A. Varga).
C Feb. 2004 (V. Sima).
C
C KEYWORDS
C
C Lyapunov equation
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION MONE, ONE, TWO, ZERO
PARAMETER ( MONE = -1.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ ZERO = 0.0D+0 )
C .. Scalar Arguments ..
DOUBLE PRECISION SCALE
INTEGER INFO, LDA, LDB, LDE, LDQ, LDWORK, LDZ, M, N
CHARACTER DICO, FACT, TRANS
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
$ BETA(*), DWORK(*), E(LDE,*), Q(LDQ,*), Z(LDZ,*)
C .. Local Scalars ..
DOUBLE PRECISION S1, S2, SAFMIN, WI, WR1, WR2
INTEGER I, INFO1, MINMN, MINWRK, OPTWRK
LOGICAL ISDISC, ISFACT, ISTRAN
C .. Local Arrays ..
DOUBLE PRECISION E1(2,2)
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY2
LOGICAL LSAME
EXTERNAL DLAMCH, DLAPY2, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEGS, DGEMM, DGEMV, DGEQRF, DGERQF,
$ DLACPY, DLAG2, DLASET, DSCAL, DTRMM, SG03BU,
$ SG03BV, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, MAX, MIN, SIGN
C .. Executable Statements ..
C
C Decode input parameters.
C
ISDISC = LSAME( DICO, 'D' )
ISFACT = LSAME( FACT, 'F' )
ISTRAN = LSAME( TRANS, 'T' )
C
C Compute minimal workspace.
C
IF (ISFACT ) THEN
MINWRK = MAX( 1, 2*N, 6*N-6 )
ELSE
MINWRK = MAX( 1, 4*N, 6*N-6 )
END IF
C
C Check the scalar input parameters.
C
IF ( .NOT.( ISDISC .OR. LSAME( DICO, 'C' ) ) ) THEN
INFO = -1
ELSEIF ( .NOT.( ISFACT .OR. LSAME( FACT, 'N' ) ) ) THEN
INFO = -2
ELSEIF ( .NOT.( ISTRAN .OR. LSAME( TRANS, 'N' ) ) ) THEN
INFO = -3
ELSEIF ( N .LT. 0 ) THEN
INFO = -4
ELSEIF ( M .LT. 0 ) THEN
INFO = -5
ELSEIF ( LDA .LT. MAX( 1, N ) ) THEN
INFO = -7
ELSEIF ( LDE .LT. MAX( 1, N ) ) THEN
INFO = -9
ELSEIF ( LDQ .LT. MAX( 1, N ) ) THEN
INFO = -11
ELSEIF ( LDZ .LT. MAX( 1, N ) ) THEN
INFO = -13
ELSEIF ( ( ISTRAN .AND. ( LDB .LT. MAX( 1, N ) ) ) .OR.
$ ( .NOT.ISTRAN .AND. ( LDB .LT. MAX( 1, M, N ) ) ) ) THEN
INFO = -15
ELSEIF ( LDWORK .LT. MINWRK ) THEN
INFO = -21
ELSE
INFO = 0
END IF
IF ( INFO .NE. 0 ) THEN
CALL XERBLA( 'SG03BD', -INFO )
RETURN
END IF
C
SCALE = ONE
C
C Quick return if possible.
C
MINMN = MIN( M, N )
IF ( MINMN .EQ. 0 ) THEN
IF ( N.GT.0 )
$ CALL DLASET( 'Full', N, N, ZERO, ZERO, B, LDB )
DWORK(1) = ONE
RETURN
ENDIF
C
IF ( ISFACT ) THEN
C
C Make sure the upper Hessenberg part of A is quasitriangular.
C
DO 20 I = 1, N-2
IF ( A(I+1,I).NE.ZERO .AND. A(I+2,I+1).NE.ZERO ) THEN
INFO = 2
RETURN
END IF
20 CONTINUE
END IF
C
IF ( .NOT.ISFACT ) THEN
C
C Reduce the pencil A - lambda * E to generalized Schur form.
C
C A := Q**T * A * Z (upper quasitriangular)
C E := Q**T * E * Z (upper triangular)
C
C ( Workspace: >= MAX(1,4*N) )
C
CALL DGEGS( 'Vectors', 'Vectors', N, A, LDA, E, LDE, ALPHAR,
$ ALPHAI, BETA, Q, LDQ, Z, LDZ, DWORK, LDWORK,
$ INFO1 )
IF ( INFO1 .NE. 0 ) THEN
INFO = 4
RETURN
END IF
OPTWRK = INT( DWORK(1) )
ELSE
OPTWRK = MINWRK
END IF
C
IF ( ISFACT ) THEN
C
C If the matrix pencil A - lambda * E has been in generalized
C Schur form on entry, compute its eigenvalues.
C
SAFMIN = DLAMCH( 'Safe minimum' )
E1(2,1) = ZERO
I = 1
C WHILE ( I .LE. N ) DO
30 IF ( I .LE. N ) THEN
IF ( ( I.EQ.N ) .OR. ( A(MIN( I+1, N ),I).EQ.ZERO ) ) THEN
ALPHAR(I) = A(I,I)
ALPHAI(I) = ZERO
BETA(I) = E(I,I)
I = I+1
ELSE
E1(1,1) = E(I,I)
E1(1,2) = E(I,I+1)
E1(2,2) = E(I+1,I+1)
CALL DLAG2( A(I,I), LDA, E1, 2, SAFMIN, S1, S2, WR1, WR2,
$ WI )
IF ( WI .EQ. ZERO ) INFO = 3
ALPHAR(I) = WR1
ALPHAI(I) = WI
BETA(I) = S1
ALPHAR(I+1) = WR2
ALPHAI(I+1) = -WI
BETA(I+1) = S2
I = I+2
END IF
GOTO 30
END IF
C END WHILE 30
IF ( INFO.NE.0 ) RETURN
END IF
C
C Check on the stability of the matrix pencil A - lambda * E.
C
DO 40 I = 1, N
IF ( ISDISC ) THEN
IF ( DLAPY2( ALPHAR(I), ALPHAI(I) ) .GE. ABS( BETA(I) ) )
$ THEN
INFO = 6
RETURN
END IF
ELSE
IF ( ( ALPHAR(I).EQ.ZERO ) .OR. ( BETA(I).EQ.ZERO ) .OR.
$ ( SIGN( ONE,ALPHAR(I) )*SIGN( ONE, BETA(I) ) .GE. ZERO) )
$ THEN
INFO = 5
RETURN
END IF
END IF
40 CONTINUE
C
C Transformation of the right hand side.
C
C B := B * Z or B := Q**T * B
C
C Use BLAS 3 if there is enough workspace. Otherwise, use BLAS 2.
C
C ( Workspace: max(1,N) )
C
IF ( .NOT.ISTRAN ) THEN
IF ( LDWORK .GE. N*M ) THEN
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, N, N, ONE, B,
$ LDB, Z, LDZ, ZERO, DWORK, M )
CALL DLACPY( 'All', M, N, DWORK, M, B, LDB )
ELSE
DO 60 I = 1, M
CALL DCOPY( N, B(I,1), LDB, DWORK, 1 )
CALL DGEMV( 'Transpose', N, N, ONE, Z, LDZ, DWORK, 1,
$ ZERO, B(I,1), LDB )
60 CONTINUE
END IF
IF ( M .LT. N )
$ CALL DLASET( 'All', N-M, N, ZERO, ZERO, B(M+1,1), LDB )
ELSE
IF ( LDWORK .GE. N*M ) THEN
CALL DLACPY( 'All', N, M, B, LDB, DWORK, N )
CALL DGEMM( 'Transpose', 'NoTranspose', N, M, N, ONE, Q,
$ LDQ, DWORK, N, ZERO, B, LDB )
ELSE
DO 80 I = 1, M
CALL DCOPY( N, B(1,I), 1, DWORK, 1 )
CALL DGEMV( 'Transpose', N, N, ONE, Q, LDQ, DWORK, 1,
$ ZERO, B(1,I), 1 )
80 CONTINUE
END IF
IF ( M .LT. N )
$ CALL DLASET( 'All', N, N-M, ZERO, ZERO, B(1,M+1), LDB )
END IF
OPTWRK = MAX( OPTWRK, N*M )
C
C Overwrite B with the triangular matrix of its QR-factorization
C or its RQ-factorization.
C (The entries on the main diagonal are non-negative.)
C
C ( Workspace: >= max(1,2*N) )
C
IF ( .NOT.ISTRAN ) THEN
IF ( M .GE. 2 ) THEN
CALL DGEQRF( M, N, B, LDB, DWORK, DWORK(N+1), LDWORK-N,
$ INFO1 )
CALL DLASET( 'Lower', MAX( M, N )-1, MIN( M, N ), ZERO,
$ ZERO, B(2,1), LDB )
END IF
DO 100 I = 1, MINMN
IF ( B(I,I) .LT. ZERO )
$ CALL DSCAL( N+1-I, MONE, B(I,I), LDB )
100 CONTINUE
ELSE
IF ( M .GE. 2 ) THEN
CALL DGERQF( N, M, B, LDB, DWORK, DWORK(N+1), LDWORK-N,
$ INFO1 )
IF ( N .GE. M ) THEN
CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, B(N-M+2,1),
$ LDB )
IF ( N .GT. M ) THEN
DO 120 I = M, 1, -1
CALL DCOPY( N, B(1,I), 1, B(1,I+N-M), 1 )
120 CONTINUE
CALL DLASET( 'All', N, N-M, ZERO, ZERO, B(1,1), LDB )
END IF
ELSE
IF ( N .GT. 1 )
$ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO,
$ B(2,M-N+1), LDB )
DO 140 I = 1, N
CALL DCOPY( N, B(1,M-N+I), 1, B(1,I), 1 )
140 CONTINUE
CALL DLASET( 'All', N, M-N, ZERO, ZERO, B(1,N+1), LDB )
END IF
ELSE
IF ( N .NE. 1 ) THEN
CALL DCOPY( N, B(1,1), 1, B(1,N), 1 )
CALL DLASET( 'All', N, 1, ZERO, ZERO, B(1,1), LDB )
END IF
END IF
DO 160 I = N - MINMN + 1, N
IF ( B(I,I) .LT. ZERO )
$ CALL DSCAL( I, MONE, B(1,I), 1 )
160 CONTINUE
END IF
OPTWRK = MAX( OPTWRK, INT( DWORK(N+1) ) + N )
C
C Solve the reduced generalized Lyapunov equation.
C
C ( Workspace: 6*N-6 )
C
IF ( ISDISC ) THEN
CALL SG03BU( TRANS, N, A, LDA, E, LDE, B, LDB, SCALE, DWORK,
$ INFO1 )
IF ( INFO1 .NE. 0 ) THEN
IF ( INFO1 .EQ. 1 ) INFO = 1
IF ( INFO1 .EQ. 2 ) INFO = 3
IF ( INFO1 .EQ. 3 ) INFO = 6
IF ( INFO1 .EQ. 4 ) INFO = 7
IF ( INFO .NE. 1 )
$ RETURN
END IF
ELSE
CALL SG03BV( TRANS, N, A, LDA, E, LDE, B, LDB, SCALE, DWORK,
$ INFO1 )
IF ( INFO1 .NE. 0 ) THEN
IF ( INFO1 .EQ. 1 ) INFO = 1
IF ( INFO1 .GE. 2 ) INFO = 3
IF ( INFO1 .EQ. 3 ) INFO = 5
IF ( INFO .NE. 1 )
$ RETURN
END IF
END IF
C
C Transform the solution matrix back.
C
C U := U * Q**T or U := Z * U
C
C Use BLAS 3 if there is enough workspace. Otherwise, use BLAS 2.
C
C ( Workspace: max(1,N) )
C
IF ( .NOT.ISTRAN ) THEN
IF ( LDWORK .GE. N*N ) THEN
CALL DLACPY( 'All', N, N, Q, LDQ, DWORK, N )
CALL DTRMM( 'Right', 'Upper', 'Transpose', 'NonUnit', N, N,
$ ONE, B, LDB, DWORK, N)
DO 170 I = 1, N
CALL DCOPY( N, DWORK(N*(I-1)+1), 1, B(I,1), LDB )
170 CONTINUE
ELSE
DO 180 I = 1, N
CALL DCOPY( N-I+1, B(I,I), LDB, DWORK, 1 )
CALL DGEMV( 'NoTranspose', N, N-I+1, ONE, Q(1,I), LDQ,
$ DWORK, 1, ZERO, B(I,1), LDB )
180 CONTINUE
END IF
ELSE
IF ( LDWORK .GE. N*N ) THEN
CALL DLACPY( 'All', N, N, Z, LDZ, DWORK, N )
CALL DTRMM( 'Right', 'Upper', 'NoTranspose', 'NonUnit', N,
$ N, ONE, B, LDB, DWORK, N )
CALL DLACPY( 'All', N, N, DWORK, N, B, LDB )
ELSE
DO 200 I = 1, N
CALL DCOPY( I, B(1,I), 1, DWORK, 1 )
CALL DGEMV( 'NoTranspose', N, I, ONE, Z, LDZ, DWORK, 1,
$ ZERO, B(1,I), 1 )
200 CONTINUE
END IF
END IF
OPTWRK = MAX( OPTWRK, N*N )
C
C Overwrite U with the triangular matrix of its QR-factorization
C or its RQ-factorization.
C (The entries on the main diagonal are non-negative.)
C
C ( Workspace: >= max(1,2*N) )
C
IF ( .NOT.ISTRAN ) THEN
CALL DGEQRF( N, N, B, LDB, DWORK, DWORK(N+1), LDWORK-N, INFO1 )
IF ( N .GT. 1 )
$ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, B(2,1), LDB )
DO 220 I = 1, N
IF ( B(I,I) .LT. ZERO )
$ CALL DSCAL( N+1-I, MONE, B(I,I), LDB )
220 CONTINUE
ELSE
CALL DGERQF( N, N, B, LDB, DWORK, DWORK(N+1), LDWORK-N, INFO1 )
IF ( N .GT. 1 )
$ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, B(2,1), LDB )
DO 240 I = 1, N
IF ( B(I,I) .LT. ZERO )
$ CALL DSCAL( I, MONE, B(1,I), 1 )
240 CONTINUE
END IF
OPTWRK = MAX( OPTWRK, INT( DWORK(N+1) ) + N )
C
DWORK(1) = DBLE( MAX( OPTWRK, MINWRK ) )
RETURN
C *** Last line of SG03BD ***
END
|