1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
SUBROUTINE SG03BW( TRANS, M, N, A, LDA, C, LDC, E, LDE, D, LDD, X,
$ LDX, SCALE, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X the generalized Sylvester equation
C
C T T
C A * X * C + E * X * D = SCALE * Y, (1)
C
C or the transposed equation
C
C T T
C A * X * C + E * X * D = SCALE * Y, (2)
C
C where A and E are real M-by-M matrices, C and D are real N-by-N
C matrices, X and Y are real M-by-N matrices. N is either 1 or 2.
C The pencil A - lambda * E must be in generalized real Schur form
C (A upper quasitriangular, E upper triangular). SCALE is an output
C scale factor, set to avoid overflow in X.
C
C ARGUMENTS
C
C Mode Parameters
C
C TRANS CHARACTER*1
C Specifies whether the transposed equation is to be solved
C or not:
C = 'N': Solve equation (1);
C = 'T': Solve equation (2).
C
C Input/Output Parameters
C
C M (input) INTEGER
C The order of the matrices A and E. M >= 0.
C
C N (input) INTEGER
C The order of the matrices C and D. N = 1 or N = 2.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,M)
C The leading M-by-M part of this array must contain the
C upper quasitriangular matrix A. The elements below the
C upper Hessenberg part are not referenced.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,M).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading N-by-N part of this array must contain the
C matrix C.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= MAX(1,N).
C
C E (input) DOUBLE PRECISION array, dimension (LDE,M)
C The leading M-by-M part of this array must contain the
C upper triangular matrix E. The elements below the main
C diagonal are not referenced.
C
C LDE INTEGER
C The leading dimension of the array E. LDE >= MAX(1,M).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,N)
C The leading N-by-N part of this array must contain the
C matrix D.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= MAX(1,N).
C
C X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, the leading M-by-N part of this array must
C contain the right hand side matrix Y.
C On exit, the leading M-by-N part of this array contains
C the solution matrix X.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= MAX(1,M).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor set to avoid overflow in X.
C 0 < SCALE <= 1.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the generalized Sylvester equation is (nearly)
C singular to working precision; perturbed values
C were used to solve the equation (but the matrices
C A, C, D, and E are unchanged).
C
C METHOD
C
C The method used by the routine is based on a generalization of the
C algorithm due to Bartels and Stewart [1]. See also [2] and [3] for
C details.
C
C REFERENCES
C
C [1] Bartels, R.H., Stewart, G.W.
C Solution of the equation A X + X B = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Gardiner, J.D., Laub, A.J., Amato, J.J., Moler, C.B.
C Solution of the Sylvester Matrix Equation
C A X B**T + C X D**T = E.
C A.C.M. Trans. Math. Soft., vol. 18, no. 2, pp. 223-231, 1992.
C
C [3] Penzl, T.
C Numerical solution of generalized Lyapunov equations.
C Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C NUMERICAL ASPECTS
C
C The routine requires about 2 * N * M**2 flops. Note that we count
C a single floating point arithmetic operation as one flop.
C
C The algorithm is backward stable if the eigenvalues of the pencil
C A - lambda * E are real. Otherwise, linear systems of order at
C most 4 are involved into the computation. These systems are solved
C by Gauss elimination with complete pivoting. The loss of stability
C of the Gauss elimination with complete pivoting is rarely
C encountered in practice.
C
C FURTHER COMMENTS
C
C When near singularity is detected, perturbed values are used
C to solve the equation (but the given matrices are unchanged).
C
C CONTRIBUTOR
C
C T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C
C REVISIONS
C
C Sep. 1998 (V. Sima).
C
C KEYWORDS
C
C Lyapunov equation
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION MONE, ONE, ZERO
PARAMETER ( MONE = -1.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
C .. Scalar Arguments ..
CHARACTER TRANS
DOUBLE PRECISION SCALE
INTEGER INFO, LDA, LDC, LDD, LDE, LDX, M, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), C(LDC,*), D(LDD,*), E(LDE,*), X(LDX,*)
C .. Local Scalars ..
DOUBLE PRECISION SCALE1
INTEGER DIMMAT, I, INFO1, J, MA, MAI, MAJ, MB, ME
LOGICAL NOTRNS
C .. Local Arrays ..
DOUBLE PRECISION MAT(4,4), RHS(4), TM(2,2)
INTEGER PIV1(4), PIV2(4)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DSCAL, MB02UU, MB02UV, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C
C Decode input parameters.
C
NOTRNS = LSAME( TRANS, 'N' )
C
C Check the scalar input parameters.
C
IF ( .NOT.( NOTRNS .OR. LSAME( TRANS, 'T' ) ) ) THEN
INFO = -1
ELSEIF ( M .LT. 0 ) THEN
INFO = -2
ELSEIF ( N .NE. 1 .AND. N .NE. 2 ) THEN
INFO = -3
ELSEIF ( LDA .LT. MAX( 1, M ) ) THEN
INFO = -5
ELSEIF ( LDC .LT. MAX( 1, N ) ) THEN
INFO = -7
ELSEIF ( LDE .LT. MAX( 1, M ) ) THEN
INFO = -9
ELSEIF ( LDD .LT. MAX( 1, N ) ) THEN
INFO = -11
ELSEIF ( LDX .LT. MAX( 1, M ) ) THEN
INFO = -13
ELSE
INFO = 0
END IF
IF ( INFO .NE. 0 ) THEN
CALL XERBLA( 'SG03BW', -INFO )
RETURN
END IF
C
SCALE = ONE
C
C Quick return if possible.
C
IF ( M .EQ. 0 )
$ RETURN
C
IF ( NOTRNS ) THEN
C
C Solve equation (1).
C
C Compute block row X(MA:ME,:). MB denotes the number of rows in
C this block row.
C
ME = 0
C WHILE ( ME .NE. M ) DO
20 IF ( ME .NE. M ) THEN
MA = ME + 1
IF ( MA .EQ. M ) THEN
ME = M
MB = 1
ELSE
IF ( A(MA+1,MA) .EQ. ZERO ) THEN
ME = MA
MB = 1
ELSE
ME = MA + 1
MB = 2
END IF
END IF
C
C Assemble Kronecker product system of linear equations with
C matrix
C
C MAT = kron(C',A(MA:ME,MA:ME)') + kron(D',E(MA:ME,MA:ME)')
C
C and right hand side
C
C RHS = vec(X(MA:ME,:)).
C
IF ( N .EQ. 1 ) THEN
DIMMAT = MB
DO 60 I = 1, MB
MAI = MA + I - 1
DO 40 J = 1, MB
MAJ = MA + J - 1
MAT(I,J) = C(1,1)*A(MAJ,MAI)
IF ( MAJ .LE. MAI )
$ MAT(I,J) = MAT(I,J) + D(1,1)*E(MAJ,MAI)
40 CONTINUE
RHS(I) = X(MAI,1)
60 CONTINUE
ELSE
DIMMAT = 2*MB
DO 100 I = 1, MB
MAI = MA + I - 1
DO 80 J = 1, MB
MAJ = MA + J - 1
MAT(I,J) = C(1,1)*A(MAJ,MAI)
MAT(MB+I,J) = C(1,2)*A(MAJ,MAI)
MAT(I,MB+J) = C(2,1)*A(MAJ,MAI)
MAT(MB+I,MB+J) = C(2,2)*A(MAJ,MAI)
IF ( MAJ .LE. MAI ) THEN
MAT(I,J) = MAT(I,J) + D(1,1)*E(MAJ,MAI)
MAT(MB+I,J) = MAT(MB+I,J) + D(1,2)*E(MAJ,MAI)
MAT(I,MB+J) = MAT(I,MB+J) + D(2,1)*E(MAJ,MAI)
MAT(MB+I,MB+J) = MAT(MB+I,MB+J) +
$ D(2,2)*E(MAJ,MAI)
END IF
80 CONTINUE
RHS(I) = X(MAI,1)
RHS(MB+I) = X(MAI,2)
100 CONTINUE
END IF
C
C Solve the system of linear equations.
C
CALL MB02UV( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 1
CALL MB02UU( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
IF ( SCALE1 .NE. ONE ) THEN
SCALE = SCALE1*SCALE
DO 120 I = 1, N
CALL DSCAL( M, SCALE1, X(1,I), 1 )
120 CONTINUE
END IF
C
IF ( N .EQ. 1 ) THEN
DO 140 I = 1, MB
MAI = MA + I - 1
X(MAI,1) = RHS(I)
140 CONTINUE
ELSE
DO 160 I = 1, MB
MAI = MA + I - 1
X(MAI,1) = RHS(I)
X(MAI,2) = RHS(MB+I)
160 CONTINUE
END IF
C
C Update right hand sides.
C
C X(ME+1:M,:) = X(ME+1:M,:) - A(MA:ME,ME+1:M)'*X(MA:ME,:)*C
C
C X(ME+1:M,:) = X(ME+1:M,:) - E(MA:ME,ME+1:M)'*X(MA:ME,:)*D
C
IF ( ME .LT. M ) THEN
CALL DGEMM( 'N', 'N', MB, N, N, ONE, X(MA,1), LDX, C,
$ LDC, ZERO, TM, 2 )
CALL DGEMM( 'T', 'N', M-ME, N, MB, MONE, A(MA,ME+1),
$ LDA, TM, 2, ONE, X(ME+1,1), LDX )
CALL DGEMM( 'N', 'N', MB, N, N, ONE, X(MA,1), LDX, D,
$ LDD, ZERO, TM, 2 )
CALL DGEMM( 'T', 'N', M-ME, N, MB, MONE, E(MA,ME+1), LDE,
$ TM, 2, ONE, X(ME+1,1), LDX )
END IF
C
GOTO 20
END IF
C END WHILE 20
C
ELSE
C
C Solve equation (2).
C
C Compute block row X(MA:ME,:). MB denotes the number of rows in
C this block row.
C
MA = M + 1
C WHILE ( MA .NE. 1 ) DO
180 IF ( MA .NE. 1 ) THEN
ME = MA - 1
IF ( ME .EQ. 1 ) THEN
MA = 1
MB = 1
ELSE
IF ( A(ME,ME-1) .EQ. ZERO ) THEN
MA = ME
MB = 1
ELSE
MA = ME - 1
MB = 2
END IF
END IF
C
C Assemble Kronecker product system of linear equations with
C matrix
C
C MAT = kron(C,A(MA:ME,MA:ME)) + kron(D,E(MA:ME,MA:ME))
C
C and right hand side
C
C RHS = vec(X(MA:ME,:)).
C
IF ( N .EQ. 1 ) THEN
DIMMAT = MB
DO 220 I = 1, MB
MAI = MA + I - 1
DO 200 J = 1, MB
MAJ = MA + J - 1
MAT(I,J) = C(1,1)*A(MAI,MAJ)
IF ( MAJ .GE. MAI )
$ MAT(I,J) = MAT(I,J) + D(1,1)*E(MAI,MAJ)
200 CONTINUE
RHS(I) = X(MAI,1)
220 CONTINUE
ELSE
DIMMAT = 2*MB
DO 260 I = 1, MB
MAI = MA + I - 1
DO 240 J = 1, MB
MAJ = MA + J - 1
MAT(I,J) = C(1,1)*A(MAI,MAJ)
MAT(MB+I,J) = C(2,1)*A(MAI,MAJ)
MAT(I,MB+J) = C(1,2)*A(MAI,MAJ)
MAT(MB+I,MB+J) = C(2,2)*A(MAI,MAJ)
IF ( MAJ .GE. MAI ) THEN
MAT(I,J) = MAT(I,J) + D(1,1)*E(MAI,MAJ)
MAT(MB+I,J) = MAT(MB+I,J) + D(2,1)*E(MAI,MAJ)
MAT(I,MB+J) = MAT(I,MB+J) + D(1,2)*E(MAI,MAJ)
MAT(MB+I,MB+J) = MAT(MB+I,MB+J) +
$ D(2,2)*E(MAI,MAJ)
END IF
240 CONTINUE
RHS(I) = X(MAI,1)
RHS(MB+I) = X(MAI,2)
260 CONTINUE
END IF
C
C Solve the system of linear equations.
C
CALL MB02UV( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 1
CALL MB02UU( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
IF ( SCALE1 .NE. ONE ) THEN
SCALE = SCALE1*SCALE
DO 280 I = 1, N
CALL DSCAL( M, SCALE1, X(1,I), 1 )
280 CONTINUE
END IF
C
IF ( N .EQ. 1 ) THEN
DO 300 I = 1, MB
MAI = MA + I - 1
X(MAI,1) = RHS(I)
300 CONTINUE
ELSE
DO 320 I = 1, MB
MAI = MA + I - 1
X(MAI,1) = RHS(I)
X(MAI,2) = RHS(MB+I)
320 CONTINUE
END IF
C
C Update right hand sides.
C
C X(1:MA-1,:) = X(1:MA-1,:) - A(1:MA-1,MA:ME)*X(MA:ME,:)*C'
C
C X(1:MA-1,:) = X(1:MA-1,:) - E(1:MA-1,MA:ME)*X(MA:ME,:)*D'
C
IF ( MA .GT. 1 ) THEN
CALL DGEMM( 'N', 'T', MB, N, N, ONE, X(MA,1), LDX, C,
$ LDC, ZERO, TM, 2 )
CALL DGEMM( 'N', 'N', MA-1, N, MB, MONE, A(1,MA), LDA,
$ TM, 2, ONE, X, LDX )
CALL DGEMM( 'N', 'T', MB, N, N, ONE, X(MA,1), LDX, D,
$ LDD, ZERO, TM, 2 )
CALL DGEMM( 'N', 'N', MA-1, N, MB, MONE, E(1,MA), LDE,
$ TM, 2, ONE, X, LDX )
END IF
C
GOTO 180
END IF
C END WHILE 180
C
END IF
C
RETURN
C *** Last line of SG03BW ***
END
|