File: TB01IZ.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (409 lines) | stat: -rw-r--r-- 12,448 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
      SUBROUTINE TB01IZ( JOB, N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
     $                   SCALE, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To reduce the 1-norm of a system matrix
C
C             S =  ( A  B )
C                  ( C  0 )
C
C     corresponding to the triple (A,B,C), by balancing. This involves
C     a diagonal similarity transformation inv(D)*A*D applied
C     iteratively to A to make the rows and columns of
C                           -1
C                  diag(D,I)  * S * diag(D,I)
C
C     as close in norm as possible.
C
C     The balancing can be performed optionally on the following
C     particular system matrices
C
C              S = A,    S = ( A  B )    or    S = ( A )
C                                                  ( C )
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Indicates which matrices are involved in balancing, as
C             follows:
C             = 'A':  All matrices are involved in balancing;
C             = 'B':  B and A matrices are involved in balancing;
C             = 'C':  C and A matrices are involved in balancing;
C             = 'N':  B and C matrices are not involved in balancing.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A, the number of rows of matrix B
C             and the number of columns of matrix C.
C             N represents the dimension of the state vector.  N >= 0.
C
C     M       (input) INTEGER.
C             The number of columns of matrix B.
C             M represents the dimension of input vector.  M >= 0.
C
C     P       (input) INTEGER.
C             The number of rows of matrix C.
C             P represents the dimension of output vector.  P >= 0.
C
C     MAXRED  (input/output) DOUBLE PRECISION
C             On entry, the maximum allowed reduction in the 1-norm of
C             S (in an iteration) if zero rows or columns are
C             encountered.
C             If MAXRED > 0.0, MAXRED must be larger than one (to enable
C             the norm reduction).
C             If MAXRED <= 0.0, then the value 10.0 for MAXRED is
C             used.
C             On exit, if the 1-norm of the given matrix S is non-zero,
C             the ratio between the 1-norm of the given matrix and the
C             1-norm of the balanced matrix.
C
C     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the system state matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the balanced matrix inv(D)*A*D.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input/output) COMPLEX*16 array, dimension (LDB,M)
C             On entry, if M > 0, the leading N-by-M part of this array
C             must contain the system input matrix B.
C             On exit, if M > 0, the leading N-by-M part of this array
C             contains the balanced matrix inv(D)*B.
C             The array B is not referenced if M = 0.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,N) if M > 0.
C             LDB >= 1        if M = 0.
C
C     C       (input/output) COMPLEX*16 array, dimension (LDC,N)
C             On entry, if P > 0, the leading P-by-N part of this array
C             must contain the system output matrix C.
C             On exit, if P > 0, the leading P-by-N part of this array
C             contains the balanced matrix C*D.
C             The array C is not referenced if P = 0.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     SCALE   (output) DOUBLE PRECISION array, dimension (N)
C             The scaling factors applied to S.  If D(j) is the scaling
C             factor applied to row and column j, then SCALE(j) = D(j),
C             for j = 1,...,N.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit.
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Balancing consists of applying a diagonal similarity
C     transformation
C                           -1
C                  diag(D,I)  * S * diag(D,I)
C
C     to make the 1-norms of each row of the first N rows of S and its
C     corresponding column nearly equal.
C
C     Information about the diagonal matrix D is returned in the vector
C     SCALE.
C
C     REFERENCES
C
C     [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C         Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C         Ostrouchov, S., and Sorensen, D.
C         LAPACK Users' Guide: Second Edition.
C         SIAM, Philadelphia, 1995.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Jan. 1998.
C     Complex version: V. Sima, Research Institute for Informatics,
C     Bucharest, Nov. 2008.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Balancing, eigenvalue, matrix algebra, matrix operations,
C     similarity transformation.
C
C  *********************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   SCLFAC
      PARAMETER          ( SCLFAC = 1.0D+1 )
      DOUBLE PRECISION   FACTOR, MAXR
      PARAMETER          ( FACTOR = 0.95D+0, MAXR = 10.0D+0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            INFO, LDA, LDB, LDC, M, N, P
      DOUBLE PRECISION   MAXRED
C     ..
C     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * )
      DOUBLE PRECISION   SCALE( * )
C     ..
C     .. Local Scalars ..
      LOGICAL            NOCONV, WITHB, WITHC
      INTEGER            I, ICA, IRA, J
      DOUBLE PRECISION   CA, CO, F, G, MAXNRM, RA, RO, S, SFMAX1,
     $                   SFMAX2, SFMIN1, SFMIN2, SNORM, SRED
      COMPLEX*16         CDUM
C     ..
C     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH, DZASUM
      EXTERNAL           DLAMCH, DZASUM, IZAMAX, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
C     ..
C     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
C     ..
C     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
C     ..
C     .. Executable Statements ..
C
C     Test the scalar input arguments.
C
      INFO  = 0
      WITHB = LSAME( JOB, 'A' ) .OR. LSAME( JOB, 'B' )
      WITHC = LSAME( JOB, 'A' ) .OR. LSAME( JOB, 'C' )
C
      IF( .NOT.WITHB .AND. .NOT.WITHC .AND. .NOT.LSAME( JOB, 'N' ) )
     $   THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( MAXRED.GT.ZERO .AND. MAXRED.LT.ONE ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( ( M.GT.0 .AND. LDB.LT.MAX( 1, N ) ) .OR.
     $         ( M.EQ.0 .AND. LDB.LT.1 ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TB01IZ', -INFO )
         RETURN
      END IF
C
      IF( N.EQ.0 )
     $   RETURN
C
C     Compute the 1-norm of the required part of matrix S and exit if
C     it is zero.
C
      SNORM = ZERO
C
      DO 10 J = 1, N
         SCALE( J ) = ONE
         CO = DZASUM( N, A( 1, J ), 1 )
         IF( WITHC .AND. P.GT.0 )
     $      CO = CO + DZASUM( P, C( 1, J ), 1 )
         SNORM = MAX( SNORM, CO )
   10 CONTINUE
C
      IF( WITHB ) THEN
C
         DO 20 J = 1, M
            SNORM = MAX( SNORM, DZASUM( N, B( 1, J ), 1 ) )
   20    CONTINUE
C
      END IF
C
      IF( SNORM.EQ.ZERO )
     $   RETURN
C
C     Set some machine parameters and the maximum reduction in the
C     1-norm of S if zero rows or columns are encountered.
C
      SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
      SFMAX1 = ONE / SFMIN1
      SFMIN2 = SFMIN1*SCLFAC
      SFMAX2 = ONE / SFMIN2
C
      SRED = MAXRED
      IF( SRED.LE.ZERO ) SRED = MAXR
C
      MAXNRM = MAX( SNORM/SRED, SFMIN1 )
C
C     Balance the matrix.
C
C     Iterative loop for norm reduction.
C
   30 CONTINUE
      NOCONV = .FALSE.
C
      DO 90 I = 1, N
         CO = ZERO
         RO = ZERO
C
         DO 40 J = 1, N
            IF( J.EQ.I )
     $         GO TO 40
            CO = CO + CABS1( A( J, I ) )
            RO = RO + CABS1( A( I, J ) )
   40    CONTINUE
C
         ICA = IZAMAX( N, A( 1, I ), 1 )
         CA  = ABS( A( ICA, I ) )
         IRA = IZAMAX( N, A( I, 1 ), LDA )
         RA  = ABS( A( I, IRA ) )
C
         IF( WITHC .AND. P.GT.0 ) THEN
            CO  = CO + DZASUM( P, C( 1, I ), 1 )
            ICA = IZAMAX( P, C( 1, I ), 1 )
            CA  = MAX( CA, ABS( C( ICA, I ) ) )
         END IF
C
         IF( WITHB .AND. M.GT.0 ) THEN
            RO  = RO + DZASUM( M, B( I, 1 ), LDB )
            IRA = IZAMAX( M, B( I, 1 ), LDB )
            RA  = MAX( RA, ABS( B( I, IRA ) ) )
         END IF
C
C        Special case of zero CO and/or RO.
C
         IF( CO.EQ.ZERO .AND. RO.EQ.ZERO )
     $      GO TO 90
         IF( CO.EQ.ZERO ) THEN
            IF( RO.LE.MAXNRM )
     $         GO TO 90
            CO = MAXNRM
         END IF
         IF( RO.EQ.ZERO ) THEN
            IF( CO.LE.MAXNRM )
     $         GO TO 90
            RO = MAXNRM
         END IF
C
C        Guard against zero CO or RO due to underflow.
C
         G = RO / SCLFAC
         F = ONE
         S = CO + RO
   50    CONTINUE
         IF( CO.GE.G .OR. MAX( F, CO, CA ).GE.SFMAX2 .OR.
     $       MIN( RO, G, RA ).LE.SFMIN2 )GO TO 60
         F  =  F*SCLFAC
         CO = CO*SCLFAC
         CA = CA*SCLFAC
         G  =  G / SCLFAC
         RO = RO / SCLFAC
         RA = RA / SCLFAC
         GO TO 50
C
   60    CONTINUE
         G = CO / SCLFAC
   70    CONTINUE
         IF( G.LT.RO .OR. MAX( RO, RA ).GE.SFMAX2 .OR.
     $       MIN( F, CO, G, CA ).LE.SFMIN2 )GO TO 80
         F  =  F / SCLFAC
         CO = CO / SCLFAC
         CA = CA / SCLFAC
         G  =  G / SCLFAC
         RO = RO*SCLFAC
         RA = RA*SCLFAC
         GO TO 70
C
C        Now balance.
C
   80    CONTINUE
         IF( ( CO+RO ).GE.FACTOR*S )
     $      GO TO 90
         IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
            IF( F*SCALE( I ).LE.SFMIN1 )
     $         GO TO 90
         END IF
         IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
            IF( SCALE( I ).GE.SFMAX1 / F )
     $         GO TO 90
         END IF
         G = ONE / F
         SCALE( I ) = SCALE( I )*F
         NOCONV = .TRUE.
C
         CALL ZDSCAL( N, G, A( I, 1 ), LDA )
         CALL ZDSCAL( N, F, A( 1, I ), 1 )
         IF( M.GT.0 ) CALL ZDSCAL( M, G, B( I, 1 ), LDB )
         IF( P.GT.0 ) CALL ZDSCAL( P, F, C( 1, I ), 1 )
C
   90 CONTINUE
C
      IF( NOCONV )
     $   GO TO 30
C
C     Set the norm reduction parameter.
C
      MAXRED = SNORM
      SNORM  = ZERO
C
      DO 100 J = 1, N
         CO = DZASUM( N, A( 1, J ), 1 )
         IF( WITHC .AND. P.GT.0 )
     $      CO = CO + DZASUM( P, C( 1, J ), 1 )
         SNORM = MAX( SNORM, CO )
  100 CONTINUE
C
      IF( WITHB ) THEN
C
         DO 110 J = 1, M
            SNORM = MAX( SNORM, DZASUM( N, B( 1, J ), 1 ) )
  110    CONTINUE
C
      END IF
      MAXRED = MAXRED/SNORM
      RETURN
C *** Last line of TB01IZ ***
      END