1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
SUBROUTINE TB01KD( DICO, STDOM, JOBA, N, M, P, ALPHA, A, LDA, B,
$ LDB, C, LDC, NDIM, U, LDU, WR, WI, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute an additive spectral decomposition of the transfer-
C function matrix of the system (A,B,C) by reducing the system
C state-matrix A to a block-diagonal form.
C The system matrices are transformed as
C A <-- inv(U)*A*U, B <--inv(U)*B and C <-- C*U.
C The leading diagonal block of the resulting A has eigenvalues
C in a suitably defined domain of interest.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C STDOM CHARACTER*1
C Specifies whether the domain of interest is of stability
C type (left part of complex plane or inside of a circle)
C or of instability type (right part of complex plane or
C outside of a circle) as follows:
C = 'S': stability type domain;
C = 'U': instability type domain.
C
C JOBA CHARACTER*1
C Specifies the shape of the state dynamics matrix on entry
C as follows:
C = 'S': A is in an upper real Schur form;
C = 'G': A is a general square dense matrix.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the state-space representation,
C i.e. the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs, or of columns of B. M >= 0.
C
C P (input) INTEGER
C The number of system outputs, or of rows of C. P >= 0.
C
C ALPHA (input) DOUBLE PRECISION.
C Specifies the boundary of the domain of interest for the
C eigenvalues of A. For a continuous-time system
C (DICO = 'C'), ALPHA is the boundary value for the real
C parts of eigenvalues, while for a discrete-time system
C (DICO = 'D'), ALPHA >= 0 represents the boundary value for
C the moduli of eigenvalues.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the unreduced state dynamics matrix A.
C If JOBA = 'S' then A must be a matrix in real Schur form.
C On exit, the leading N-by-N part of this array contains a
C block diagonal matrix inv(U) * A * U with two diagonal
C blocks in real Schur form with the elements below the
C first subdiagonal set to zero.
C The leading NDIM-by-NDIM block of A has eigenvalues in the
C domain of interest and the trailing (N-NDIM)-by-(N-NDIM)
C block has eigenvalues outside the domain of interest.
C The domain of interest for lambda(A), the eigenvalues
C of A, is defined by the parameters ALPHA, DICO and STDOM
C as follows:
C For a continuous-time system (DICO = 'C'):
C Real(lambda(A)) < ALPHA if STDOM = 'S';
C Real(lambda(A)) > ALPHA if STDOM = 'U';
C For a discrete-time system (DICO = 'D'):
C Abs(lambda(A)) < ALPHA if STDOM = 'S';
C Abs(lambda(A)) > ALPHA if STDOM = 'U'.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input matrix B.
C On exit, the leading N-by-M part of this array contains
C the transformed input matrix inv(U) * B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the output matrix C.
C On exit, the leading P-by-N part of this array contains
C the transformed output matrix C * U.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C NDIM (output) INTEGER
C The number of eigenvalues of A lying inside the domain of
C interest for eigenvalues.
C
C U (output) DOUBLE PRECISION array, dimension (LDU,N)
C The leading N-by-N part of this array contains the
C transformation matrix used to reduce A to the block-
C diagonal form. The first NDIM columns of U span the
C invariant subspace of A corresponding to the eigenvalues
C of its leading diagonal block. The last N-NDIM columns
C of U span the reducing subspace of A corresponding to
C the eigenvalues of the trailing diagonal block of A.
C
C LDU INTEGER
C The leading dimension of array U. LDU >= max(1,N).
C
C WR, WI (output) DOUBLE PRECISION arrays, dimension (N)
C WR and WI contain the real and imaginary parts,
C respectively, of the computed eigenvalues of A. The
C eigenvalues will be in the same order that they appear on
C the diagonal of the output real Schur form of A. Complex
C conjugate pairs of eigenvalues will appear consecutively
C with the eigenvalue having the positive imaginary part
C first.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of working array DWORK.
C LDWORK >= MAX(1,N) if JOBA = 'S';
C LDWORK >= MAX(1,3*N) if JOBA = 'G'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the QR algorithm failed to compute all the
C eigenvalues of A;
C = 2: a failure occured during the ordering of the real
C Schur form of A;
C = 3: the separation of the two diagonal blocks failed
C because of very close eigenvalues.
C
C METHOD
C
C A similarity transformation U is determined that reduces the
C system state-matrix A to a block-diagonal form (with two diagonal
C blocks), so that the leading diagonal block of the resulting A has
C eigenvalues in a specified domain of the complex plane. The
C determined transformation is applied to the system (A,B,C) as
C A <-- inv(U)*A*U, B <-- inv(U)*B and C <-- C*U.
C
C REFERENCES
C
C [1] Safonov, M.G., Jonckheere, E.A., Verma, M., Limebeer, D.J.N.
C Synthesis of positive real multivariable feedback systems.
C Int. J. Control, pp. 817-842, 1987.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires about 14N floating point operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, March 1998.
C Based on the RASP routine SADSDC.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Invariant subspace, real Schur form, similarity transformation,
C spectral factorization.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOBA, STDOM
INTEGER INFO, LDA, LDB, LDC, LDU, LDWORK, M, N, NDIM, P
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), U(LDU,*),
$ WI(*), WR(*)
C .. Local Scalars ..
LOGICAL DISCR, LJOBG
INTEGER NDIM1, NR
DOUBLE PRECISION SCALE
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DLASET, DTRSYL, TB01LD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C
C .. Executable Statements ..
C
INFO = 0
DISCR = LSAME( DICO, 'D' )
LJOBG = LSAME( JOBA, 'G' )
C
C Check input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( LSAME( STDOM, 'S' ) .OR.
$ LSAME( STDOM, 'U' ) ) ) THEN
INFO = -2
ELSE IF( .NOT. ( LSAME( JOBA, 'S' ) .OR. LJOBG ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( P.LT.0 ) THEN
INFO = -6
ELSE IF( DISCR .AND. ALPHA.LT.ZERO ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( LDU.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDWORK.LT.MAX( 1, N ) .OR.
$ LDWORK.LT.MAX( 1, 3*N ) .AND. LJOBG ) THEN
INFO = -20
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TB01KD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
NDIM = 0
IF( N.EQ.0 )
$ RETURN
C
C Reduce A to an ordered real Schur form using an orthogonal
C similarity transformation A <- U'*A*U and accumulate the
C transformations in U. The reordering of the real Schur form of A
C is performed in accordance with the values of the parameters DICO,
C STDOM and ALPHA. Apply the transformation to B and C: B <- U'*B
C and C <- C*U. The eigenvalues of A are computed in (WR,WI).
C
C Workspace: need 3*N (if JOBA = 'G'), or N (if JOBA = 'S');
C prefer larger.
C
CALL TB01LD( DICO, STDOM, JOBA, N, M, P, ALPHA, A, LDA, B, LDB, C,
$ LDC, NDIM, U, LDU, WR, WI, DWORK, LDWORK, INFO )
C
IF ( INFO.NE.0 )
$ RETURN
C
IF ( NDIM.GT.0 .AND. NDIM.LT.N ) THEN
C
C Reduce A to a block-diagonal form by a similarity
C transformation of the form
C -1 ( I -X )
C A <- T AT, where T = ( ) and X satisfies the
C ( 0 I )
C Sylvester equation
C
C A11*X - X*A22 = A12.
C
NR = N - NDIM
NDIM1 = NDIM + 1
CALL DTRSYL( 'N', 'N', -1, NDIM, NR, A, LDA, A(NDIM1,NDIM1),
$ LDA, A(1,NDIM1), LDA, SCALE, INFO )
IF ( INFO.NE.0 ) THEN
INFO = 3
RETURN
END IF
C -1
C Compute B <- T B, C <- CT, U <- UT.
C
SCALE = ONE/SCALE
CALL DGEMM( 'N', 'N', NDIM, M, NR, SCALE, A(1,NDIM1), LDA,
$ B(NDIM1,1), LDB, ONE, B, LDB )
CALL DGEMM( 'N', 'N', P, NR, NDIM, -SCALE, C, LDC, A(1,NDIM1),
$ LDA, ONE, C(1,NDIM1), LDC )
CALL DGEMM( 'N', 'N', N, NR, NDIM, -SCALE, U, LDU, A(1,NDIM1),
$ LDA, ONE, U(1,NDIM1), LDU )
C
C Set A12 to zero.
C
CALL DLASET( 'Full', NDIM, NR, ZERO, ZERO, A(1,NDIM1), LDA )
END IF
C
C Set to zero the lower triangular part under the first subdiagonal
C of A.
C
IF ( N.GT.2 )
$ CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, A( 3, 1 ), LDA )
RETURN
C *** Last line of TB01KD ***
END
|