File: TB01ND.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (349 lines) | stat: -rw-r--r-- 11,251 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
      SUBROUTINE TB01ND( JOBU, UPLO, N, P, A, LDA, C, LDC, U, LDU,
     $                   DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To reduce the pair (A,C) to lower or upper observer Hessenberg
C     form using (and optionally accumulating) unitary state-space
C     transformations.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBU    CHARACTER*1
C             Indicates whether the user wishes to accumulate in a
C             matrix U the unitary state-space transformations for
C             reducing the system, as follows:
C             = 'N':  Do not form U;
C             = 'I':  U is initialized to the unit matrix and the
C                     unitary transformation matrix U is returned;
C             = 'U':  The given matrix U is updated by the unitary
C                     transformations used in the reduction.
C
C     UPLO    CHARACTER*1
C             Indicates whether the user wishes the pair (A,C) to be
C             reduced to upper or lower observer Hessenberg form as
C             follows:
C             = 'U':  Upper observer Hessenberg form;
C             = 'L':  Lower observer Hessenberg form.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The actual state dimension, i.e. the order of the
C             matrix A.  N >= 0.
C
C     P       (input) INTEGER
C             The actual output dimension, i.e. the number of rows of
C             the matrix C.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state transition matrix A to be transformed.
C             On exit, the leading N-by-N part of this array contains
C             the transformed state transition matrix U' * A * U.
C             The annihilated elements are set to zero.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the output matrix C to be transformed.
C             On exit, the leading P-by-N part of this array contains
C             the transformed output matrix C * U.
C             The annihilated elements are set to zero.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     U       (input/output) DOUBLE PRECISION array, dimension (LDU,*)
C             On entry, if JOBU = 'U', then the leading N-by-N part of
C             this array must contain a given matrix U (e.g. from a
C             previous call to another SLICOT routine), and on exit, the
C             leading N-by-N part of this array contains the product of
C             the input matrix U and the state-space transformation
C             matrix which reduces the given pair to observer Hessenberg
C             form.
C             On exit, if JOBU = 'I', then the leading N-by-N part of
C             this array contains the matrix of accumulated unitary
C             similarity transformations which reduces the given pair
C             to observer Hessenberg form.
C             If JOBU = 'N', the array U is not referenced and can be
C             supplied as a dummy array (i.e. set parameter LDU = 1 and
C             declare this array to be U(1,1) in the calling program).
C
C     LDU     INTEGER
C             The leading dimension of array U. If JOBU = 'U' or
C             JOBU = 'I', LDU >= MAX(1,N); if JOBU = 'N', LDU >= 1.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (MAX(N,P-1))
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine computes a unitary state-space transformation U, which
C     reduces the pair (A,C) to one of the following observer Hessenberg
C     forms:
C
C                                N
C                       |*  . . . . . .  *|
C                       |.               .|
C                       |.               .|
C                       |.               .| N
C                       |*               .|
C            |U'AU|     |   .            .|
C            |----|  =  |     .          .|
C            |CU  |     |       * . . .  *|
C                       -------------------
C                       |         * . .  *|
C                       |           .    .| P
C                       |             .  .|
C                       |                *|
C
C         if UPLO = 'U', or
C
C                               N
C                      |*                |
C                      |.  .             |
C                      |.    .           | P
C                      |*  . . *         |
C            |CU  |    -------------------
C            |----|  = |*  . . . *       |
C            |U'AU|    |.          .     |
C                      |.            .   |
C                      |.               *|
C                      |.               .| N
C                      |.               .|
C                      |.               .|
C                      |*  . . . . . .  *|
C
C     if UPLO = 'L'.
C
C     If P >= N, then the matrix CU is trapezoidal and U'AU is full.
C
C     REFERENCES
C
C     [1] Van Dooren, P. and Verhaegen, M.H.G.
C         On the use of unitary state-space transformations.
C         In : Contemporary Mathematics on Linear Algebra and its Role
C         in Systems Theory, 47, AMS, Providence, 1985.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O((N + P) x N**2) operations and is
C     backward stable (see [1]).
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C     Supersedes Release 2.0 routine TB01BD by M. Vanbegin, and
C     P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C     REVISIONS
C
C     February 1997.
C
C     KEYWORDS
C
C     Controllability, observer Hessenberg form, orthogonal
C     transformation, unitary transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDC, LDU, N, P
      CHARACTER         JOBU, UPLO
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), C(LDC,*), DWORK(*), U(LDU,*)
C     .. Local Scalars ..
      LOGICAL           LJOBA, LJOBI, LUPLO
      INTEGER           II, J, N1, NJ, P1, PAR1, PAR2, PAR3, PAR4, PAR5,
     $                  PAR6
      DOUBLE PRECISION  DZ
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DLARFG, DLASET, DLATZM, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
      LUPLO = LSAME( UPLO, 'U' )
      LJOBI = LSAME( JOBU, 'I' )
      LJOBA = LJOBI.OR.LSAME( JOBU, 'U' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LJOBA .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LUPLO .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -8
      ELSE IF( .NOT.LJOBA .AND. LDU.LT.1 .OR.
     $              LJOBA .AND. LDU.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return
C
         CALL XERBLA( 'TB01ND', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. P.EQ.0 )
     $   RETURN
C
      P1 = P + 1
      N1 = N - 1
C
      IF ( LJOBI ) THEN
C
C        Initialize U to the identity matrix.
C
         CALL DLASET( 'Full', N, N, ZERO, ONE, U, LDU )
      END IF
C
C     Perform transformations involving both C and A.
C
      DO 20 J = 1, MIN( P, N1 )
         NJ = N - J
         IF ( LUPLO ) THEN
            PAR1 = P - J + 1
            PAR2 = NJ + 1
            PAR3 = 1
            PAR4 = P - J
            PAR5 = NJ
         ELSE
            PAR1 = J
            PAR2 = J
            PAR3 = J + 1
            PAR4 = P
            PAR5 = N
         END IF
C
         CALL DLARFG( NJ+1, C(PAR1,PAR2), C(PAR1,PAR3), LDC, DZ )
C
C        Update A.
C
         CALL DLATZM( 'Left', NJ+1, N, C(PAR1,PAR3), LDC, DZ, A(PAR2,1),
     $                A(PAR3,1), LDA, DWORK )
         CALL DLATZM( 'Right', N, NJ+1, C(PAR1,PAR3), LDC, DZ,
     $                A(1,PAR2), A(1,PAR3), LDA, DWORK )
C
         IF ( LJOBA ) THEN
C
C           Update U.
C
            CALL DLATZM( 'Right', N, NJ+1, C(PAR1,PAR3), LDC, DZ,
     $                   U(1,PAR2), U(1,PAR3), LDU, DWORK )
         END IF
C
         IF ( J.NE.P ) THEN
C
C           Update C.
C
            CALL DLATZM( 'Right', PAR4-PAR3+1, NJ+1, C(PAR1,PAR3), LDC,
     $                   DZ, C(PAR3,PAR2), C(PAR3,PAR3), LDC, DWORK )
         END IF
C
         DO 10 II = PAR3, PAR5
            C(PAR1,II) = ZERO
   10    CONTINUE
C
   20 CONTINUE
C
      DO 40 J = P1, N1
C
C        Perform next transformations only involving A.
C
         NJ = N - J
         IF ( LUPLO ) THEN
            PAR1 = N + P1 - J
            PAR2 = NJ + 1
            PAR3 = 1
            PAR4 = NJ
            PAR5 = 1
            PAR6 = N + P - J
         ELSE
            PAR1 = J - P
            PAR2 = J
            PAR3 = J + 1
            PAR4 = N
            PAR5 = J - P + 1
            PAR6 = N
         END IF
C
         IF ( NJ.GT.0 ) THEN
C
            CALL DLARFG( NJ+1, A(PAR1,PAR2), A(PAR1,PAR3), LDA, DZ )
C
C           Update A.
C
            CALL DLATZM( 'Left', NJ+1, N, A(PAR1,PAR3), LDA, DZ,
     $                   A(PAR2,1), A(PAR3,1), LDA, DWORK )
            CALL DLATZM( 'Right', PAR6-PAR5+1, NJ+1, A(PAR1,PAR3), LDA,
     $                    DZ, A(PAR5,PAR2), A(PAR5,PAR3), LDA, DWORK )
C
            IF ( LJOBA ) THEN
C
C              Update U.
C
               CALL DLATZM( 'Right', N, NJ+1, A(PAR1,PAR3), LDA, DZ,
     $                      U(1,PAR2), U(1,PAR3), LDU, DWORK )
            END IF
C
            DO 30 II = PAR3, PAR4
               A(PAR1,II) = ZERO
   30       CONTINUE
C
         END IF
C
   40 CONTINUE
C
      RETURN
C *** Last line of TB01ND ***
      END