1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
SUBROUTINE TB01ND( JOBU, UPLO, N, P, A, LDA, C, LDC, U, LDU,
$ DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To reduce the pair (A,C) to lower or upper observer Hessenberg
C form using (and optionally accumulating) unitary state-space
C transformations.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBU CHARACTER*1
C Indicates whether the user wishes to accumulate in a
C matrix U the unitary state-space transformations for
C reducing the system, as follows:
C = 'N': Do not form U;
C = 'I': U is initialized to the unit matrix and the
C unitary transformation matrix U is returned;
C = 'U': The given matrix U is updated by the unitary
C transformations used in the reduction.
C
C UPLO CHARACTER*1
C Indicates whether the user wishes the pair (A,C) to be
C reduced to upper or lower observer Hessenberg form as
C follows:
C = 'U': Upper observer Hessenberg form;
C = 'L': Lower observer Hessenberg form.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The actual state dimension, i.e. the order of the
C matrix A. N >= 0.
C
C P (input) INTEGER
C The actual output dimension, i.e. the number of rows of
C the matrix C. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state transition matrix A to be transformed.
C On exit, the leading N-by-N part of this array contains
C the transformed state transition matrix U' * A * U.
C The annihilated elements are set to zero.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the output matrix C to be transformed.
C On exit, the leading P-by-N part of this array contains
C the transformed output matrix C * U.
C The annihilated elements are set to zero.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C U (input/output) DOUBLE PRECISION array, dimension (LDU,*)
C On entry, if JOBU = 'U', then the leading N-by-N part of
C this array must contain a given matrix U (e.g. from a
C previous call to another SLICOT routine), and on exit, the
C leading N-by-N part of this array contains the product of
C the input matrix U and the state-space transformation
C matrix which reduces the given pair to observer Hessenberg
C form.
C On exit, if JOBU = 'I', then the leading N-by-N part of
C this array contains the matrix of accumulated unitary
C similarity transformations which reduces the given pair
C to observer Hessenberg form.
C If JOBU = 'N', the array U is not referenced and can be
C supplied as a dummy array (i.e. set parameter LDU = 1 and
C declare this array to be U(1,1) in the calling program).
C
C LDU INTEGER
C The leading dimension of array U. If JOBU = 'U' or
C JOBU = 'I', LDU >= MAX(1,N); if JOBU = 'N', LDU >= 1.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (MAX(N,P-1))
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine computes a unitary state-space transformation U, which
C reduces the pair (A,C) to one of the following observer Hessenberg
C forms:
C
C N
C |* . . . . . . *|
C |. .|
C |. .|
C |. .| N
C |* .|
C |U'AU| | . .|
C |----| = | . .|
C |CU | | * . . . *|
C -------------------
C | * . . *|
C | . .| P
C | . .|
C | *|
C
C if UPLO = 'U', or
C
C N
C |* |
C |. . |
C |. . | P
C |* . . * |
C |CU | -------------------
C |----| = |* . . . * |
C |U'AU| |. . |
C |. . |
C |. *|
C |. .| N
C |. .|
C |. .|
C |* . . . . . . *|
C
C if UPLO = 'L'.
C
C If P >= N, then the matrix CU is trapezoidal and U'AU is full.
C
C REFERENCES
C
C [1] Van Dooren, P. and Verhaegen, M.H.G.
C On the use of unitary state-space transformations.
C In : Contemporary Mathematics on Linear Algebra and its Role
C in Systems Theory, 47, AMS, Providence, 1985.
C
C NUMERICAL ASPECTS
C
C The algorithm requires O((N + P) x N**2) operations and is
C backward stable (see [1]).
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C Supersedes Release 2.0 routine TB01BD by M. Vanbegin, and
C P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C February 1997.
C
C KEYWORDS
C
C Controllability, observer Hessenberg form, orthogonal
C transformation, unitary transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDC, LDU, N, P
CHARACTER JOBU, UPLO
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), C(LDC,*), DWORK(*), U(LDU,*)
C .. Local Scalars ..
LOGICAL LJOBA, LJOBI, LUPLO
INTEGER II, J, N1, NJ, P1, PAR1, PAR2, PAR3, PAR4, PAR5,
$ PAR6
DOUBLE PRECISION DZ
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLARFG, DLASET, DLATZM, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C .. Executable Statements ..
C
INFO = 0
LUPLO = LSAME( UPLO, 'U' )
LJOBI = LSAME( JOBU, 'I' )
LJOBA = LJOBI.OR.LSAME( JOBU, 'U' )
C
C Test the input scalar arguments.
C
IF( .NOT.LJOBA .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.LUPLO .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( P.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -8
ELSE IF( .NOT.LJOBA .AND. LDU.LT.1 .OR.
$ LJOBA .AND. LDU.LT.MAX( 1, N ) ) THEN
INFO = -10
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return
C
CALL XERBLA( 'TB01ND', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 .OR. P.EQ.0 )
$ RETURN
C
P1 = P + 1
N1 = N - 1
C
IF ( LJOBI ) THEN
C
C Initialize U to the identity matrix.
C
CALL DLASET( 'Full', N, N, ZERO, ONE, U, LDU )
END IF
C
C Perform transformations involving both C and A.
C
DO 20 J = 1, MIN( P, N1 )
NJ = N - J
IF ( LUPLO ) THEN
PAR1 = P - J + 1
PAR2 = NJ + 1
PAR3 = 1
PAR4 = P - J
PAR5 = NJ
ELSE
PAR1 = J
PAR2 = J
PAR3 = J + 1
PAR4 = P
PAR5 = N
END IF
C
CALL DLARFG( NJ+1, C(PAR1,PAR2), C(PAR1,PAR3), LDC, DZ )
C
C Update A.
C
CALL DLATZM( 'Left', NJ+1, N, C(PAR1,PAR3), LDC, DZ, A(PAR2,1),
$ A(PAR3,1), LDA, DWORK )
CALL DLATZM( 'Right', N, NJ+1, C(PAR1,PAR3), LDC, DZ,
$ A(1,PAR2), A(1,PAR3), LDA, DWORK )
C
IF ( LJOBA ) THEN
C
C Update U.
C
CALL DLATZM( 'Right', N, NJ+1, C(PAR1,PAR3), LDC, DZ,
$ U(1,PAR2), U(1,PAR3), LDU, DWORK )
END IF
C
IF ( J.NE.P ) THEN
C
C Update C.
C
CALL DLATZM( 'Right', PAR4-PAR3+1, NJ+1, C(PAR1,PAR3), LDC,
$ DZ, C(PAR3,PAR2), C(PAR3,PAR3), LDC, DWORK )
END IF
C
DO 10 II = PAR3, PAR5
C(PAR1,II) = ZERO
10 CONTINUE
C
20 CONTINUE
C
DO 40 J = P1, N1
C
C Perform next transformations only involving A.
C
NJ = N - J
IF ( LUPLO ) THEN
PAR1 = N + P1 - J
PAR2 = NJ + 1
PAR3 = 1
PAR4 = NJ
PAR5 = 1
PAR6 = N + P - J
ELSE
PAR1 = J - P
PAR2 = J
PAR3 = J + 1
PAR4 = N
PAR5 = J - P + 1
PAR6 = N
END IF
C
IF ( NJ.GT.0 ) THEN
C
CALL DLARFG( NJ+1, A(PAR1,PAR2), A(PAR1,PAR3), LDA, DZ )
C
C Update A.
C
CALL DLATZM( 'Left', NJ+1, N, A(PAR1,PAR3), LDA, DZ,
$ A(PAR2,1), A(PAR3,1), LDA, DWORK )
CALL DLATZM( 'Right', PAR6-PAR5+1, NJ+1, A(PAR1,PAR3), LDA,
$ DZ, A(PAR5,PAR2), A(PAR5,PAR3), LDA, DWORK )
C
IF ( LJOBA ) THEN
C
C Update U.
C
CALL DLATZM( 'Right', N, NJ+1, A(PAR1,PAR3), LDA, DZ,
$ U(1,PAR2), U(1,PAR3), LDU, DWORK )
END IF
C
DO 30 II = PAR3, PAR4
A(PAR1,II) = ZERO
30 CONTINUE
C
END IF
C
40 CONTINUE
C
RETURN
C *** Last line of TB01ND ***
END
|