File: TB01TD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (308 lines) | stat: -rw-r--r-- 10,565 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
      SUBROUTINE TB01TD( N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, LOW,
     $                   IGH, SCSTAT, SCIN, SCOUT, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To reduce a given state-space representation (A,B,C,D) to
C     balanced form by means of state permutations and state, input and
C     output scalings.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the state-space representation, i.e. the
C             order of the original state dynamics matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the original state dynamics matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the balanced state dynamics matrix A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the balanced input/state matrix B.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the balanced state/output matrix C.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the original direct transmission matrix D.
C             On exit, the leading P-by-M part of this array contains
C             the scaled direct transmission matrix D.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     LOW     (output) INTEGER
C             The index of the lower end of the balanced submatrix of A.
C
C     IGH     (output) INTEGER
C             The index of the upper end of the balanced submatrix of A.
C
C     SCSTAT  (output) DOUBLE PRECISION array, dimension (N)
C             This array contains the information defining the
C             similarity transformations used to permute and balance
C             the state dynamics matrix A, as returned from the LAPACK
C             library routine DGEBAL.
C
C     SCIN    (output) DOUBLE PRECISION array, dimension (M)
C             Contains the scalars used to scale the system inputs so
C             that the columns of the final matrix B have norms roughly
C             equal to the column sums of the balanced matrix A
C             (see FURTHER COMMENTS).
C             The j-th input of the balanced state-space representation
C             is SCIN(j)*(j-th column of the permuted and balanced
C             input/state matrix B).
C
C     SCOUT   (output) DOUBLE PRECISION array, dimension (P)
C             Contains the scalars used to scale the system outputs so
C             that the rows of the final matrix C have norms roughly
C             equal to the row sum of the balanced matrix A.
C             The i-th output of the balanced state-space representation
C             is SCOUT(i)*(i-th row of the permuted and balanced
C             state/ouput matrix C).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Similarity transformations are used to permute the system states
C     and balance the corresponding row and column sum norms of a
C     submatrix of the state dynamics matrix A. These operations are
C     also applied to the input/state matrix B and the system inputs
C     are then scaled (see parameter SCIN) so that the columns of the
C     final matrix B have norms roughly equal to the column sum norm of
C     the balanced matrix A (see FURTHER COMMENTS).
C     The above operations are also applied to the matrix C, and the
C     system outputs are then scaled (see parameter SCOUT) so that the
C     rows of the final matrix C have norms roughly equal to the row sum
C     norm of the balanced matrix A (see FURTHER COMMENTS).
C     Finally, the (I,J)-th element of the direct transmission matrix D
C     is scaled as
C          D(I,J) = D(I,J)*(1.0/SCIN(J))*SCOUT(I), where I = 1,2,...,P
C     and J = 1,2,...,M.
C
C     Scaling performed to balance the row/column sum norms is by
C     integer powers of the machine base so as to avoid introducing
C     rounding errors.
C
C     REFERENCES
C
C     [1] Wilkinson, J.H. and Reinsch, C.
C         Handbook for Automatic Computation, (Vol II, Linear Algebra).
C         Springer-Verlag, 1971, (contribution II/11).
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations and is backward stable.
C
C     FURTHER COMMENTS
C
C     The columns (rows) of the final matrix B (matrix C) have norms
C     'roughly' equal to the column (row) sum norm of the balanced
C     matrix A, i.e.
C        size/BASE < abssum <= size
C     where
C        BASE   = the base of the arithmetic used on the computer, which
C                 can be obtained from the LAPACK Library routine
C                 DLAMCH;
C
C        size   = column or row sum norm of the balanced matrix A;
C        abssum = column sum norm of the balanced matrix B or row sum
C                 norm of the balanced matrix C.
C
C     The routine is BASE dependent.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C     Supersedes Release 2.0 routine TB01HD by T.W.C.Williams, Kingston
C     Polytechnic, United Kingdom, October 1982.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Balanced form, orthogonal transformation, similarity
C     transformation, state-space model, state-space representation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE
      PARAMETER         ( ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           IGH, INFO, LDA, LDB, LDC, LDD, LOW, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), SCIN(*), SCOUT(*), SCSTAT(*)
C     .. Local Scalars ..
      INTEGER           I, J, K, KNEW, KOLD
      DOUBLE PRECISION  ACNORM, ARNORM, SCALE
C     .. External Functions ..
      DOUBLE PRECISION  DLANGE
      EXTERNAL          DLANGE
C     .. External Subroutines ..
      EXTERNAL          DGEBAL, DSCAL, DSWAP, TB01TY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX
C     .. Executable Statements ..
C
      INFO = 0
C
C     Test the input scalar arguments.
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -9
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -11
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TB01TD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MAX( N, M, P ).EQ.0 ) THEN
         LOW = 1
         IGH = N
         RETURN
      END IF
C
C     Permute states, and balance a submatrix of A.
C
      CALL DGEBAL( 'Both', N, A, LDA, LOW, IGH, SCSTAT, INFO )
C
C     Use the information in SCSTAT on state scalings and reorderings
C     to transform B and C.
C
      DO 10 K = 1, N
         KOLD = K
         IF ( ( LOW.GT.KOLD ) .OR. ( KOLD.GT.IGH ) ) THEN
            IF ( KOLD.LT.LOW ) KOLD = LOW - KOLD
            KNEW = INT( SCSTAT(KOLD) )
            IF ( KNEW.NE.KOLD ) THEN
C
C              Exchange rows KOLD and KNEW of B.
C
               CALL DSWAP( M, B(KOLD,1), LDB, B(KNEW,1), LDB )
C
C              Exchange columns KOLD and KNEW of C.
C
               CALL DSWAP( P, C(1,KOLD), 1, C(1,KNEW), 1 )
            END IF
         END IF
   10 CONTINUE
C
      IF ( IGH.NE.LOW ) THEN
C
         DO 20 K = LOW, IGH
            SCALE = SCSTAT(K)
C
C           Scale the K-th row of permuted B.
C
            CALL DSCAL( M, ONE/SCALE, B(K,1), LDB )
C
C           Scale the K-th column of permuted C.
C
            CALL DSCAL( P, SCALE, C(1,K), 1 )
   20    CONTINUE
C
      END IF
C
C     Calculate the column and row sum norms of A.
C
      ACNORM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
      ARNORM = DLANGE( 'I-norm', N, N, A, LDA, DWORK )
C
C     Scale the columns of B (i.e. inputs) to have norms roughly ACNORM.
C
      CALL TB01TY( 1, 0, 0, N, M, ACNORM, B, LDB, SCIN )
C
C     Scale the rows of C (i.e. outputs) to have norms roughly ARNORM.
C
      CALL TB01TY( 0, 0, 0, P, N, ARNORM, C, LDC, SCOUT )
C
C     Finally, apply these input and output scalings to D and set SCIN.
C
      DO 40 J = 1, M
         SCALE = SCIN(J)
C
         DO 30 I = 1, P
            D(I,J) = D(I,J)*( SCALE*SCOUT(I) )
   30    CONTINUE
C
         SCIN(J) = ONE/SCALE
   40 CONTINUE
C
      RETURN
C *** Last line of TB01TD ***
      END