1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
SUBROUTINE TB01TD( N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, LOW,
$ IGH, SCSTAT, SCIN, SCOUT, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To reduce a given state-space representation (A,B,C,D) to
C balanced form by means of state permutations and state, input and
C output scalings.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the state-space representation, i.e. the
C order of the original state dynamics matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the original state dynamics matrix A.
C On exit, the leading N-by-N part of this array contains
C the balanced state dynamics matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, the leading N-by-M part of this array contains
C the balanced input/state matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, the leading P-by-N part of this array contains
C the balanced state/output matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the original direct transmission matrix D.
C On exit, the leading P-by-M part of this array contains
C the scaled direct transmission matrix D.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C LOW (output) INTEGER
C The index of the lower end of the balanced submatrix of A.
C
C IGH (output) INTEGER
C The index of the upper end of the balanced submatrix of A.
C
C SCSTAT (output) DOUBLE PRECISION array, dimension (N)
C This array contains the information defining the
C similarity transformations used to permute and balance
C the state dynamics matrix A, as returned from the LAPACK
C library routine DGEBAL.
C
C SCIN (output) DOUBLE PRECISION array, dimension (M)
C Contains the scalars used to scale the system inputs so
C that the columns of the final matrix B have norms roughly
C equal to the column sums of the balanced matrix A
C (see FURTHER COMMENTS).
C The j-th input of the balanced state-space representation
C is SCIN(j)*(j-th column of the permuted and balanced
C input/state matrix B).
C
C SCOUT (output) DOUBLE PRECISION array, dimension (P)
C Contains the scalars used to scale the system outputs so
C that the rows of the final matrix C have norms roughly
C equal to the row sum of the balanced matrix A.
C The i-th output of the balanced state-space representation
C is SCOUT(i)*(i-th row of the permuted and balanced
C state/ouput matrix C).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Similarity transformations are used to permute the system states
C and balance the corresponding row and column sum norms of a
C submatrix of the state dynamics matrix A. These operations are
C also applied to the input/state matrix B and the system inputs
C are then scaled (see parameter SCIN) so that the columns of the
C final matrix B have norms roughly equal to the column sum norm of
C the balanced matrix A (see FURTHER COMMENTS).
C The above operations are also applied to the matrix C, and the
C system outputs are then scaled (see parameter SCOUT) so that the
C rows of the final matrix C have norms roughly equal to the row sum
C norm of the balanced matrix A (see FURTHER COMMENTS).
C Finally, the (I,J)-th element of the direct transmission matrix D
C is scaled as
C D(I,J) = D(I,J)*(1.0/SCIN(J))*SCOUT(I), where I = 1,2,...,P
C and J = 1,2,...,M.
C
C Scaling performed to balance the row/column sum norms is by
C integer powers of the machine base so as to avoid introducing
C rounding errors.
C
C REFERENCES
C
C [1] Wilkinson, J.H. and Reinsch, C.
C Handbook for Automatic Computation, (Vol II, Linear Algebra).
C Springer-Verlag, 1971, (contribution II/11).
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations and is backward stable.
C
C FURTHER COMMENTS
C
C The columns (rows) of the final matrix B (matrix C) have norms
C 'roughly' equal to the column (row) sum norm of the balanced
C matrix A, i.e.
C size/BASE < abssum <= size
C where
C BASE = the base of the arithmetic used on the computer, which
C can be obtained from the LAPACK Library routine
C DLAMCH;
C
C size = column or row sum norm of the balanced matrix A;
C abssum = column sum norm of the balanced matrix B or row sum
C norm of the balanced matrix C.
C
C The routine is BASE dependent.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C Supersedes Release 2.0 routine TB01HD by T.W.C.Williams, Kingston
C Polytechnic, United Kingdom, October 1982.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Balanced form, orthogonal transformation, similarity
C transformation, state-space model, state-space representation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER IGH, INFO, LDA, LDB, LDC, LDD, LOW, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), SCIN(*), SCOUT(*), SCSTAT(*)
C .. Local Scalars ..
INTEGER I, J, K, KNEW, KOLD
DOUBLE PRECISION ACNORM, ARNORM, SCALE
C .. External Functions ..
DOUBLE PRECISION DLANGE
EXTERNAL DLANGE
C .. External Subroutines ..
EXTERNAL DGEBAL, DSCAL, DSWAP, TB01TY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C .. Executable Statements ..
C
INFO = 0
C
C Test the input scalar arguments.
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -9
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -11
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TB01TD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MAX( N, M, P ).EQ.0 ) THEN
LOW = 1
IGH = N
RETURN
END IF
C
C Permute states, and balance a submatrix of A.
C
CALL DGEBAL( 'Both', N, A, LDA, LOW, IGH, SCSTAT, INFO )
C
C Use the information in SCSTAT on state scalings and reorderings
C to transform B and C.
C
DO 10 K = 1, N
KOLD = K
IF ( ( LOW.GT.KOLD ) .OR. ( KOLD.GT.IGH ) ) THEN
IF ( KOLD.LT.LOW ) KOLD = LOW - KOLD
KNEW = INT( SCSTAT(KOLD) )
IF ( KNEW.NE.KOLD ) THEN
C
C Exchange rows KOLD and KNEW of B.
C
CALL DSWAP( M, B(KOLD,1), LDB, B(KNEW,1), LDB )
C
C Exchange columns KOLD and KNEW of C.
C
CALL DSWAP( P, C(1,KOLD), 1, C(1,KNEW), 1 )
END IF
END IF
10 CONTINUE
C
IF ( IGH.NE.LOW ) THEN
C
DO 20 K = LOW, IGH
SCALE = SCSTAT(K)
C
C Scale the K-th row of permuted B.
C
CALL DSCAL( M, ONE/SCALE, B(K,1), LDB )
C
C Scale the K-th column of permuted C.
C
CALL DSCAL( P, SCALE, C(1,K), 1 )
20 CONTINUE
C
END IF
C
C Calculate the column and row sum norms of A.
C
ACNORM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
ARNORM = DLANGE( 'I-norm', N, N, A, LDA, DWORK )
C
C Scale the columns of B (i.e. inputs) to have norms roughly ACNORM.
C
CALL TB01TY( 1, 0, 0, N, M, ACNORM, B, LDB, SCIN )
C
C Scale the rows of C (i.e. outputs) to have norms roughly ARNORM.
C
CALL TB01TY( 0, 0, 0, P, N, ARNORM, C, LDC, SCOUT )
C
C Finally, apply these input and output scalings to D and set SCIN.
C
DO 40 J = 1, M
SCALE = SCIN(J)
C
DO 30 I = 1, P
D(I,J) = D(I,J)*( SCALE*SCOUT(I) )
30 CONTINUE
C
SCIN(J) = ONE/SCALE
40 CONTINUE
C
RETURN
C *** Last line of TB01TD ***
END
|