1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
SUBROUTINE TB01VD( APPLY, N, M, L, A, LDA, B, LDB, C, LDC, D, LDD,
$ X0, THETA, LTHETA, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To convert the linear discrete-time system given as (A, B, C, D),
C with initial state x0, into the output normal form [1], with
C parameter vector THETA. The matrix A is assumed to be stable.
C The matrices A, B, C, D and the vector x0 are converted, so that
C on exit they correspond to the system defined by THETA.
C
C ARGUMENTS
C
C Mode Parameters
C
C APPLY CHARACTER*1
C Specifies whether or not the parameter vector should be
C transformed using a bijective mapping, as follows:
C = 'A' : apply the bijective mapping to the N vectors in
C THETA corresponding to the matrices A and C;
C = 'N' : do not apply the bijective mapping.
C The transformation performed when APPLY = 'A' allows
C to get rid of the constraints norm(THETAi) < 1, i = 1:N.
C A call of the SLICOT Library routine TB01VY associated to
C a call of TB01VD must use the same value of APPLY.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the system state matrix A, assumed to be stable.
C On exit, the leading N-by-N part of this array contains
C the transformed system state matrix corresponding to the
C output normal form with parameter vector THETA.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the system input matrix B.
C On exit, the leading N-by-M part of this array contains
C the transformed system input matrix corresponding to the
C output normal form with parameter vector THETA.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading L-by-N part of this array must
C contain the system output matrix C.
C On exit, the leading L-by-N part of this array contains
C the transformed system output matrix corresponding to the
C output normal form with parameter vector THETA.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,L).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading L-by-M part of this array must contain the
C system input/output matrix D.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,L).
C
C X0 (input/output) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain the initial state of the
C system, x0.
C On exit, this array contains the transformed initial state
C of the system, corresponding to the output normal form
C with parameter vector THETA.
C
C THETA (output) DOUBLE PRECISION array, dimension (LTHETA)
C The leading N*(L+M+1)+L*M part of this array contains the
C parameter vector that defines a system (A, B, C, D, x0)
C which is equivalent up to a similarity transformation to
C the system given on entry. The parameters are:
C
C THETA(1:N*L) : parameters for A, C;
C THETA(N*L+1:N*(L+M)) : parameters for B;
C THETA(N*(L+M)+1:N*(L+M)+L*M) : parameters for D;
C THETA(N*(L+M)+L*M+1:N*(L+M+1)+L*M): parameters for x0.
C
C LTHETA INTEGER
C The length of array THETA. LTHETA >= N*(L+M+1)+L*M.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1, N*N*L + N*L + N,
C N*N + MAX(N*N + N*MAX(N,L) + 6*N + MIN(N,L),
C N*M)).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the Lyapunov equation A'*Q*A - Q = -scale^2*C'*C
C could only be solved with scale = 0;
C = 2: if matrix A is not discrete-time stable;
C = 3: if the QR algorithm failed to converge for
C matrix A.
C
C METHOD
C
C The matrices A and C are converted to output normal form.
C First, the Lyapunov equation
C
C A'*Q*A - Q = -scale^2*C'*C,
C
C is solved in the Cholesky factor T, T'*T = Q, and then T is used
C to get the transformation matrix.
C
C The matrix B and the initial state x0 are transformed accordingly.
C
C Then, the QR factorization of the transposed observability matrix
C is computed, and the matrix Q is used to further transform the
C system matrices. The parameters characterizing A and C are finally
C obtained by applying a set of N orthogonal transformations.
C
C REFERENCES
C
C [1] Peeters, R.L.M., Hanzon, B., and Olivi, M.
C Balanced realizations of discrete-time stable all-pass
C systems and the tangential Schur algorithm.
C Proceedings of the European Control Conference,
C 31 August - 3 September 1999, Karlsruhe, Germany.
C Session CP-6, Discrete-time Systems, 1999.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Oct. 2000, during a stay at University of Twente, NL.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001,
C Feb. 2002, Feb. 2004.
C
C KEYWORDS
C
C Asymptotically stable, Lyapunov equation, output normal form,
C parameter estimation, similarity transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
C .. Scalar Arguments ..
CHARACTER APPLY
INTEGER INFO, L, LDA, LDB, LDC, LDD, LDWORK, LTHETA, M,
$ N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), THETA(*), X0(*)
C .. Local Scalars ..
DOUBLE PRECISION PIBY2, RI, SCALE, TI
INTEGER CA, I, IA, IN, IQ, IR, IT, ITAU, IU, IWI, IWR,
$ J, JWORK, K, LDCA, LDT, WRKOPT
LOGICAL LAPPLY
C .. External Functions ..
EXTERNAL DNRM2, LSAME
DOUBLE PRECISION DNRM2
LOGICAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMM, DGEMV, DGEQRF, DGER,
$ DLACPY, DLASET, DORMQR, DSCAL, DTRMM, DTRMV,
$ DTRSM, MA02AD, SB03OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ATAN, INT, MAX, MIN, SQRT, TAN
C ..
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
LAPPLY = LSAME( APPLY, 'A' )
C
INFO = 0
IF ( .NOT.( LAPPLY .OR. LSAME( APPLY, 'N' ) ) ) THEN
INFO = -1
ELSEIF ( N.LT.0 ) THEN
INFO = -2
ELSEIF ( M.LT.0 ) THEN
INFO = -3
ELSEIF ( L.LT.0 ) THEN
INFO = -4
ELSEIF ( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSEIF ( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSEIF ( LDC.LT.MAX( 1, L ) ) THEN
INFO = -10
ELSEIF ( LDD.LT.MAX( 1, L ) ) THEN
INFO = -12
ELSEIF ( LTHETA.LT.( N*( M + L + 1 ) + L*M ) ) THEN
INFO = -15
ELSEIF ( LDWORK.LT.MAX( 1, N*N*L + N*L + N, N*N +
$ MAX( N*( N + MAX( N, L ) + 6 ) +
$ MIN( N, L ), N*M ) ) ) THEN
INFO = -17
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'TB01VD', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( MAX( N, M, L ).EQ.0 ) THEN
DWORK(1) = ONE
RETURN
ELSE IF ( N.EQ.0 ) THEN
CALL DLACPY( 'Full', L, M, D, LDD, THETA, MAX( 1, L ) )
DWORK(1) = ONE
RETURN
ELSE IF ( L.EQ.0 ) THEN
CALL DLACPY( 'Full', N, M, B, LDB, THETA, N )
CALL DCOPY( N, X0, 1, THETA(N*M+1), 1 )
DWORK(1) = ONE
RETURN
ENDIF
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
WRKOPT = 1
PIBY2 = TWO*ATAN( ONE )
C
C Convert A and C to output normal form.
C First, solve the Lyapunov equation
C A'*Q*A - Q = -scale^2*C'*C,
C in the Cholesky factor T, T'*T = Q, and use T to get the
C transformation matrix. Copy A and C, to preserve them.
C
C Workspace: need N*(2*N + MAX(N,L) + 6) + MIN(N,L).
C prefer larger.
C
C Initialize the indices in the workspace.
C
LDT = MAX( N, L )
CA = 1
IA = 1
IT = IA + N*N
IU = IT + LDT*N
IWR = IU + N*N
IWI = IWR + N
C
JWORK = IWI + N
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK(IA), N )
CALL DLACPY( 'Full', L, N, C, LDC, DWORK(IT), LDT )
C
CALL SB03OD( 'Discrete', 'NotFactored', 'NoTranspose', N, L,
$ DWORK(IA), N, DWORK(IU), N, DWORK(IT), LDT, SCALE,
$ DWORK(IWR), DWORK(IWI), DWORK(JWORK), LDWORK-JWORK+1,
$ INFO )
IF ( INFO.NE.0 ) THEN
IF ( INFO.EQ.6 ) THEN
INFO = 3
ELSE
INFO = 2
ENDIF
RETURN
ENDIF
WRKOPT = INT( DWORK(JWORK) ) + JWORK - 1
C
IF ( SCALE.EQ.ZERO ) THEN
INFO = 1
RETURN
ENDIF
C
C Compute A = T*A*T^(-1).
C
CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', N, N, ONE,
$ DWORK(IT), LDT, A, LDA )
C
CALL DTRSM( 'Right', 'Upper', 'NoTranspose', 'NonUnit', N, N, ONE,
$ DWORK(IT), LDT, A, LDA )
IF ( M.GT.0 ) THEN
C
C Compute B = (1/scale)*T*B.
C
CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', N, M,
$ ONE/SCALE, DWORK(IT), LDT, B, LDB )
ENDIF
C
C Compute x0 = (1/scale)*T*x0.
C
CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', N, DWORK(IT), LDT,
$ X0, 1 )
CALL DSCAL( N, ONE/SCALE, X0, 1 )
C
C Compute C = scale*C*T^(-1).
C
CALL DTRSM( 'Right', 'Upper', 'NoTranspose', 'NonUnit', L, N,
$ SCALE, DWORK(IT), LDT, C, LDC )
C
C Now, the system has been transformed to the output normal form.
C Build the transposed observability matrix in DWORK(CA) and compute
C its QR factorization.
C
CALL MA02AD( 'Full', L, N, C, LDC, DWORK(CA), N )
C
DO 10 I = 1, N - 1
CALL DGEMM( 'Transpose', 'NoTranspose', N, L, N, ONE, A, LDA,
$ DWORK(CA+(I-1)*N*L), N, ZERO, DWORK(CA+I*N*L), N )
10 CONTINUE
C
C Compute the QR factorization.
C
C Workspace: need N*N*L + N + L*N.
C prefer N*N*L + N + NB*L*N.
C
ITAU = CA + N*N*L
JWORK = ITAU + N
CALL DGEQRF( N, L*N, DWORK(CA), N, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Compute Q such that R has all diagonal elements nonnegative.
C Only the first N*N part of R is needed. Move the details
C of the QR factorization process, to gain memory and efficiency.
C
C Workspace: need 2*N*N + 2*N.
C prefer 2*N*N + N + NB*N.
C
IR = N*N + 1
IF ( L.NE.2 )
$ CALL DCOPY( N, DWORK(ITAU), 1, DWORK(IR+N*N), 1 )
CALL DLACPY( 'Lower', N, N, DWORK(CA), N, DWORK(IR), N )
ITAU = IR + N*N
JWORK = ITAU + N
C
IQ = 1
CALL DLASET( 'Full', N, N, ZERO, ONE, DWORK(IQ), N )
C
DO 20 I = 1, N
IF ( DWORK(IR+(I-1)*(N+1)).LT.ZERO )
$ DWORK(IQ+(I-1)*(N+1))= -ONE
20 CONTINUE
C
CALL DORMQR( 'Left', 'NoTranspose', N, N, N, DWORK(IR), N,
$ DWORK(ITAU), DWORK(IQ), N, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
JWORK = IR
C
C Now, the transformation matrix Q is in DWORK(IQ).
C
C Compute A = Q'*A*Q.
C
CALL DGEMM( 'Transpose', 'NoTranspose', N, N, N, ONE, DWORK(IQ),
$ N, A, LDA, ZERO, DWORK(JWORK), N )
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, N, ONE,
$ DWORK(JWORK), N, DWORK(IQ), N, ZERO, A, LDA )
C
IF ( M.GT.0 ) THEN
C
C Compute B = Q'*B.
C Workspace: need N*N + N*M.
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(JWORK), N )
CALL DGEMM( 'Transpose', 'NoTranspose', N, M, N, ONE,
$ DWORK(IQ), N, DWORK(JWORK), N, ZERO, B, LDB )
ENDIF
C
C Compute C = C*Q.
C Workspace: need N*N + N*L.
C
CALL DLACPY( 'Full', L, N, C, LDC, DWORK(JWORK), L )
CALL DGEMM( 'NoTranspose', 'NoTranspose', L, N, N, ONE,
$ DWORK(JWORK), L, DWORK(IQ), N, ZERO, C, LDC )
C
C Compute x0 = Q'*x0.
C
CALL DCOPY( N, X0, 1, DWORK(JWORK), 1 )
CALL DGEMV( 'Transpose', N, N, ONE, DWORK(IQ), N, DWORK(JWORK),
$ 1, ZERO, X0, 1 )
C
C Now, copy C and A into the workspace to make it easier to read out
C the corresponding part of THETA, and to apply the transformations.
C
LDCA = N + L
C
DO 30 I = 1, N
CALL DCOPY( L, C(1,I), 1, DWORK(CA+(I-1)*LDCA), 1 )
CALL DCOPY( N, A(1,I), 1, DWORK(CA+L+(I-1)*LDCA), 1 )
30 CONTINUE
C
JWORK = CA + LDCA*N
C
C The parameters characterizing A and C are extracted in this loop.
C Workspace: need N*(N + L + 1).
C
DO 60 I = 1, N
CALL DCOPY( L, DWORK(CA+1+(N-I)*(LDCA+1)), 1, THETA((I-1)*L+1),
$ 1 )
RI = DWORK(CA+(N-I)*(LDCA+1))
TI = DNRM2( L, THETA((I-1)*L+1), 1 )
C
C Multiply the part of [C; A] which will be currently transformed
C with Ui = [ -THETAi, Si; RI, THETAi' ] from the left, without
C storing Ui. Ui has the size (L+1)-by-(L+1).
C
CALL DGEMV( 'Transpose', L, N, ONE, DWORK(CA+N-I+1), LDCA,
$ THETA((I-1)*L+1), 1, ZERO, DWORK(JWORK), 1 )
C
IF ( TI.GT.ZERO ) THEN
CALL DGER( L, N, (RI-ONE)/TI/TI, THETA((I-1)*L+1), 1,
$ DWORK(JWORK), 1, DWORK(CA+N-I+1), LDCA )
ELSE
C
C The call below is for the limiting case.
C
CALL DGER( L, N, -HALF, THETA((I-1)*L+1), 1,
$ DWORK(JWORK), 1, DWORK(CA+N-I+1), LDCA )
ENDIF
C
CALL DGER( L, N, -ONE, THETA((I-1)*L+1), 1, DWORK(CA+N-I),
$ LDCA, DWORK(CA+N-I+1), LDCA )
CALL DAXPY( N, RI, DWORK(CA+N-I), LDCA, DWORK(JWORK), 1 )
C
C Move these results to their appropriate locations.
C
DO 50 J = 1, N
IN = CA + N - I + ( J - 1 )*LDCA
DO 40 K = IN + 1, IN + L
DWORK(K-1) = DWORK(K)
40 CONTINUE
DWORK(IN+L) = DWORK(JWORK+J-1)
50 CONTINUE
C
C Now, apply the bijective mapping, which allows to get rid
C of the constraint norm(THETAi) < 1.
C
IF ( LAPPLY .AND. TI.NE.ZERO )
$ CALL DSCAL( L, TAN( TI*PIBY2 )/TI, THETA((I-1)*L+1), 1 )
C
60 CONTINUE
C
IF ( M.GT.0 ) THEN
C
C The next part of THETA is B.
C
CALL DLACPY( 'Full', N, M, B, LDB, THETA(N*L+1), N )
C
C Copy the matrix D.
C
CALL DLACPY( 'Full', L, M, D, LDD, THETA(N*(L+M)+1), L )
ENDIF
C
C Copy the initial state x0.
C
CALL DCOPY( N, X0, 1, THETA(N*(L+M)+L*M+1), 1 )
C
DWORK(1) = WRKOPT
RETURN
C
C *** Last line of TB01VD ***
END
|