1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
SUBROUTINE TB01VY( APPLY, N, M, L, THETA, LTHETA, A, LDA, B, LDB,
$ C, LDC, D, LDD, X0, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To convert the linear discrete-time system given as its output
C normal form [1], with parameter vector THETA, into the state-space
C representation (A, B, C, D), with the initial state x0.
C
C ARGUMENTS
C
C Mode Parameters
C
C APPLY CHARACTER*1
C Specifies whether or not the parameter vector should be
C transformed using a bijective mapping, as follows:
C = 'A' : apply the bijective mapping to the N vectors in
C THETA corresponding to the matrices A and C;
C = 'N' : do not apply the bijective mapping.
C The transformation performed when APPLY = 'A' allows
C to get rid of the constraints norm(THETAi) < 1, i = 1:N.
C A call of the SLICOT Library routine TB01VD associated to
C a call of TB01VY must use the same value of APPLY.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C L (input) INTEGER
C The number of system outputs. L >= 0.
C
C THETA (input) DOUBLE PRECISION array, dimension (LTHETA)
C The leading N*(L+M+1)+L*M part of this array must contain
C the parameter vector that defines a system (A, B, C, D),
C with the initial state x0. The parameters are:
C
C THETA(1:N*L) : parameters for A, C;
C THETA(N*L+1:N*(L+M)) : parameters for B;
C THETA(N*(L+M)+1:N*(L+M)+L*M) : parameters for D;
C THETA(N*(L+M)+L*M+1:N*(L+M+1)+L*M): parameters for x0.
C
C LTHETA INTEGER
C The length of array THETA. LTHETA >= N*(L+M+1)+L*M.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array contains the system
C state matrix corresponding to the output normal form with
C parameter vector THETA.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (output) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array contains the system
C input matrix corresponding to the output normal form with
C parameter vector THETA.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N)
C The leading L-by-N part of this array contains the system
C output matrix corresponding to the output normal form with
C parameter vector THETA.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,L).
C
C D (output) DOUBLE PRECISION array, dimension (LDD,M)
C The leading L-by-M part of this array contains the system
C input/output matrix corresponding to the output normal
C form with parameter vector THETA.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,L).
C
C X0 (output) DOUBLE PRECISION array, dimension (N)
C This array contains the initial state of the system, x0,
C corresponding to the output normal form with parameter
C vector THETA.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= N*(N+L+1).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The parameters characterizing A and C are used to build N
C orthogonal transformations, which are then applied to recover
C these matrices.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Oct. 2000, during a stay at University of Twente, NL.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001,
C Feb. 2002, Feb. 2004.
C
C KEYWORDS
C
C Asymptotically stable, output normal form, parameter estimation,
C similarity transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
C .. Scalar Arguments ..
CHARACTER APPLY
INTEGER INFO, L, LDA, LDB, LDC, LDD, LDWORK, LTHETA, M,
$ N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), THETA(*), X0(*)
C .. Local Scalars ..
DOUBLE PRECISION FACTOR, RI, TI, TOBYPI
INTEGER CA, JWORK, I, IN, J, K, LDCA
LOGICAL LAPPLY
C .. External Functions ..
EXTERNAL DNRM2, LSAME
DOUBLE PRECISION DNRM2
LOGICAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMV, DGER, DLACPY, DSCAL,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC ATAN, MAX, SQRT
C ..
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
LAPPLY = LSAME( APPLY, 'A' )
C
INFO = 0
IF ( .NOT.( LAPPLY .OR. LSAME( APPLY, 'N' ) ) ) THEN
INFO = -1
ELSEIF ( N.LT.0 ) THEN
INFO = -2
ELSEIF ( M.LT.0 ) THEN
INFO = -3
ELSEIF ( L.LT.0 ) THEN
INFO = -4
ELSEIF ( LTHETA.LT.( N*( L + M + 1 ) + L*M ) ) THEN
INFO = -6
ELSEIF ( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSEIF ( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSEIF ( LDC.LT.MAX( 1, L ) ) THEN
INFO = -12
ELSEIF ( LDD.LT.MAX( 1, L ) ) THEN
INFO = -14
ELSEIF ( LDWORK.LT.N*( N + L + 1 ) ) THEN
INFO = -17
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'TB01VY', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( MAX( N, M, L ).EQ.0 )
$ RETURN
C
IF ( M.GT.0 ) THEN
C
C Copy the matrix B from THETA.
C
CALL DLACPY( 'Full', N, M, THETA(N*L+1), N, B, LDB )
C
C Copy the matrix D.
C
CALL DLACPY( 'Full', L, M, THETA(N*(L+M)+1), L, D, LDD )
ENDIF
C
IF ( N.EQ.0 ) THEN
RETURN
ELSE IF ( L.EQ.0 ) THEN
CALL DCOPY( N, THETA(N*M+1), 1, X0, 1 )
RETURN
END IF
C
C Initialize the indices in the workspace.
C
LDCA = N + L
C
CA = 1
C
JWORK = CA + N*LDCA
TOBYPI = HALF/ATAN( ONE )
C
C Generate the matrices C and A from their parameters.
C Start with the block matrix [0; I], where 0 is a block of zeros
C of size L-by-N, and I is the identity matrix of order N.
C
DWORK(CA) = ZERO
CALL DCOPY( N*(L+N), DWORK(CA), 0, DWORK(CA), 1 )
DWORK(CA+L) = ONE
CALL DCOPY( N, DWORK(CA+L), 0, DWORK(CA+L), LDCA+1 )
C
C Now, read out THETA(1 : N*L) and perform the transformations
C defined by the parameters in THETA.
C
DO 30 I = N, 1, -1
C
C Save THETAi in the first column of C and use the copy for
C further processing.
C
CALL DCOPY( L, THETA((I-1)*L+1), 1, C, 1 )
TI = DNRM2( L, C, 1 )
IF ( LAPPLY .AND. TI.NE.ZERO ) THEN
C
C Apply the bijective mapping which guarantees that TI < 1.
C
FACTOR = TOBYPI*ATAN( TI )/TI
C
C Scale THETAi and apply the same scaling on TI.
C
CALL DSCAL( L, FACTOR, C, 1 )
TI = TI*FACTOR
END IF
C
C RI = sqrt( 1 - TI**2 ).
C
RI = SQRT( ( ONE - TI )*( ONE + TI ) )
C
C Multiply a certain part of DWORK(CA) with Ui' from the left,
C where Ui = [ -THETAi, Si; RI, THETAi' ] is (L+1)-by-(L+1), but
C Ui is not stored.
C
CALL DGEMV( 'Transpose', L, N, -ONE, DWORK(CA+N-I), LDCA, C, 1,
$ ZERO, DWORK(JWORK), 1 )
C
IF ( TI.GT.ZERO ) THEN
CALL DGER( L, N, (ONE-RI)/TI/TI, C, 1, DWORK(JWORK), 1,
$ DWORK(CA+N-I), LDCA )
ELSE
C
C The call below is for the limiting case.
C
CALL DGER( L, N, HALF, C, 1, DWORK(JWORK), 1,
$ DWORK(CA+N-I), LDCA )
ENDIF
C
CALL DGER( L, N, ONE, C, 1, DWORK(CA+N-I+L), LDCA,
$ DWORK(CA+N-I), LDCA )
CALL DAXPY( N, RI, DWORK(CA+N-I+L), LDCA, DWORK(JWORK), 1 )
C
C Move these results to their appropriate locations.
C
DO 20 J = 1, N
IN = CA + N - I + ( J - 1 )*LDCA
DO 10 K = IN + L, IN + 1, -1
DWORK(K) = DWORK(K-1)
10 CONTINUE
DWORK(IN) = DWORK(JWORK+J-1)
20 CONTINUE
C
30 CONTINUE
C
C Now, DWORK(CA) = [C; A]. Copy to C and A.
C
DO 40 I = 1, N
CALL DCOPY( L, DWORK(CA+(I-1)*LDCA), 1, C(1,I), 1 )
CALL DCOPY( N, DWORK(CA+L+(I-1)*LDCA), 1, A(1,I), 1 )
40 CONTINUE
C
C Copy the initial state x0.
C
CALL DCOPY( N, THETA(N*(L+M)+L*M+1), 1, X0, 1 )
C
RETURN
C
C *** Last line of TB01VY ***
END
|