1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
SUBROUTINE TB01XD( JOBD, N, M, P, KL, KU, A, LDA, B, LDB, C, LDC,
$ D, LDD, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To apply a special transformation to a system given as a triple
C (A,B,C),
C
C A <-- P * A' * P, B <-- P * C', C <-- B' * P,
C
C where P is a matrix with 1 on the secondary diagonal, and with 0
C in the other entries. Matrix A can be specified as a band matrix.
C Optionally, matrix D of the system can be transposed. This
C transformation is actually a special similarity transformation of
C the dual system.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBD CHARACTER*1
C Specifies whether or not a non-zero matrix D appears in
C the given state space model:
C = 'D': D is present;
C = 'Z': D is assumed a zero matrix.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A, the number of rows of matrix B
C and the number of columns of matrix C.
C N represents the dimension of the state vector. N >= 0.
C
C M (input) INTEGER.
C The number of columns of matrix B.
C M represents the dimension of input vector. M >= 0.
C
C P (input) INTEGER.
C The number of rows of matrix C.
C P represents the dimension of output vector. P >= 0.
C
C KL (input) INTEGER
C The number of subdiagonals of A to be transformed.
C MAX( 0, N-1 ) >= KL >= 0.
C
C KU (input) INTEGER
C The number of superdiagonals of A to be transformed.
C MAX( 0, N-1 ) >= KU >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the system state matrix A.
C On exit, the leading N-by-N part of this array contains
C the transformed (pertransposed) matrix P*A'*P.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension
C (LDB,MAX(M,P))
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, the leading N-by-P part of this array contains
C the dual input/state matrix P*C'.
C
C LDB INTEGER
C The leading dimension of the array B.
C LDB >= MAX(1,N) if M > 0 or P > 0.
C LDB >= 1 if M = 0 and P = 0.
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, the leading M-by-N part of this array contains
C the dual state/output matrix B'*P.
C
C LDC INTEGER
C The leading dimension of array C.
C LDC >= MAX(1,M,P) if N > 0.
C LDC >= 1 if N = 0.
C
C D (input/output) DOUBLE PRECISION array, dimension
C (LDD,MAX(M,P))
C On entry, if JOBD = 'D', the leading P-by-M part of this
C array must contain the original direct transmission
C matrix D.
C On exit, if JOBD = 'D', the leading M-by-P part of this
C array contains the transposed direct transmission matrix
C D'. The array D is not referenced if JOBD = 'Z'.
C
C LDD INTEGER
C The leading dimension of array D.
C LDD >= MAX(1,M,P) if JOBD = 'D'.
C LDD >= 1 if JOBD = 'Z'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit.
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The rows and/or columns of the matrices of the triplet (A,B,C)
C and, optionally, of the matrix D are swapped in a special way.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1998.
C Partly based on routine DMPTR (A. Varga, German Aerospace
C Research Establishment, DLR, Aug. 1992).
C
C
C REVISIONS
C
C 07-31-1998, 04-25-1999, A. Varga.
C 03-16-2004, V. Sima.
C
C KEYWORDS
C
C Matrix algebra, matrix operations, similarity transformation.
C
C *********************************************************************
C
C ..
C .. Scalar Arguments ..
CHARACTER JOBD
INTEGER INFO, KL, KU, LDA, LDB, LDC, LDD, M, N, P
C ..
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ D( LDD, * )
C ..
C .. Local Scalars ..
LOGICAL LJOBD
INTEGER J, J1, LDA1, MAXMP, MINMP, NM1
C ..
C .. External functions ..
LOGICAL LSAME
EXTERNAL LSAME
C ..
C .. External Subroutines ..
EXTERNAL DCOPY, DSWAP, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
C Test the scalar input arguments.
C
INFO = 0
LJOBD = LSAME( JOBD, 'D' )
MAXMP = MAX( M, P )
MINMP = MIN( M, P )
NM1 = N - 1
C
IF( .NOT.LJOBD .AND. .NOT.LSAME( JOBD, 'Z' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( P.LT.0 ) THEN
INFO = -4
ELSE IF( KL.LT.0 .OR. KL.GT.MAX( 0, NM1 ) ) THEN
INFO = -5
ELSE IF( KU.LT.0 .OR. KU.GT.MAX( 0, NM1 ) ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( ( MAXMP.GT.0 .AND. LDB.LT.MAX( 1, N ) ) .OR.
$ ( MINMP.EQ.0 .AND. LDB.LT.1 ) ) THEN
INFO = -10
ELSE IF( LDC.LT.1 .OR. ( N.GT.0 .AND. LDC.LT.MAXMP ) ) THEN
INFO = -12
ELSE IF( LDD.LT.1 .OR. ( LJOBD .AND. LDD.LT.MAXMP ) ) THEN
INFO = -14
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TB01XD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( LJOBD ) THEN
C
C Replace D by D', if non-scalar.
C
DO 5 J = 1, MAXMP
IF ( J.LT.MINMP ) THEN
CALL DSWAP( MINMP-J, D(J+1,J), 1, D(J,J+1), LDD )
ELSE IF ( J.GT.P ) THEN
CALL DCOPY( P, D(1,J), 1, D(J,1), LDD )
ELSE IF ( J.GT.M ) THEN
CALL DCOPY( M, D(J,1), LDD, D(1,J), 1 )
END IF
5 CONTINUE
C
END IF
C
IF( N.EQ.0 )
$ RETURN
C
C Replace matrix A by P*A'*P.
C
IF ( KL.EQ.NM1 .AND. KU.EQ.NM1 ) THEN
C
C Full matrix A.
C
DO 10 J = 1, NM1
CALL DSWAP( N-J, A( 1, J ), 1, A( N-J+1, J+1 ), -LDA )
10 CONTINUE
C
ELSE
C
C Band matrix A.
C
LDA1 = LDA + 1
C
C Pertranspose the KL subdiagonals.
C
DO 20 J = 1, MIN( KL, N-2 )
J1 = ( N - J )/2
CALL DSWAP( J1, A(J+1,1), LDA1, A(N-J1+1,N-J1+1-J), -LDA1 )
20 CONTINUE
C
C Pertranspose the KU superdiagonals.
C
DO 30 J = 1, MIN( KU, N-2 )
J1 = ( N - J )/2
CALL DSWAP( J1, A(1,J+1), LDA1, A(N-J1+1-J,N-J1+1), -LDA1 )
30 CONTINUE
C
C Pertranspose the diagonal.
C
J1 = N/2
CALL DSWAP( J1, A(1,1), LDA1, A(N-J1+1,N-J1+1), -LDA1 )
C
END IF
C
C Replace matrix B by P*C' and matrix C by B'*P.
C
DO 40 J = 1, MAXMP
IF ( J.LE.MINMP ) THEN
CALL DSWAP( N, B(1,J), 1, C(J,1), -LDC )
ELSE IF ( J.GT.P ) THEN
CALL DCOPY( N, B(1,J), 1, C(J,1), -LDC )
ELSE
CALL DCOPY( N, C(J,1), -LDC, B(1,J), 1 )
END IF
40 CONTINUE
C
RETURN
C *** Last line of TB01XD ***
END
|