File: TB01XD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (284 lines) | stat: -rw-r--r-- 8,761 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
      SUBROUTINE TB01XD( JOBD, N, M, P, KL, KU, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To apply a special transformation to a system given as a triple
C     (A,B,C),
C
C        A <-- P * A' * P,  B <-- P * C',  C <-- B' * P,
C
C     where P is a matrix with 1 on the secondary diagonal, and with 0
C     in the other entries. Matrix A can be specified as a band matrix.
C     Optionally, matrix D of the system can be transposed. This
C     transformation is actually a special similarity transformation of
C     the dual system.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBD    CHARACTER*1
C             Specifies whether or not a non-zero matrix D appears in
C             the given state space model:
C             = 'D':  D is present;
C             = 'Z':  D is assumed a zero matrix.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A, the number of rows of matrix B
C             and the number of columns of matrix C.
C             N represents the dimension of the state vector.  N >= 0.
C
C     M       (input) INTEGER.
C             The number of columns of matrix B.
C             M represents the dimension of input vector.  M >= 0.
C
C     P       (input) INTEGER.
C             The number of rows of matrix C.
C             P represents the dimension of output vector.  P >= 0.
C
C     KL      (input) INTEGER
C             The number of subdiagonals of A to be transformed.
C             MAX( 0, N-1 ) >= KL >= 0.
C
C     KU      (input) INTEGER
C             The number of superdiagonals of A to be transformed.
C             MAX( 0, N-1 ) >= KU >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the system state matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the transformed (pertransposed) matrix P*A'*P.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension
C             (LDB,MAX(M,P))
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B.
C             On exit, the leading N-by-P part of this array contains
C             the dual input/state matrix P*C'.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,N) if M > 0 or  P > 0.
C             LDB >= 1        if M = 0 and P = 0.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C.
C             On exit, the leading M-by-N part of this array contains
C             the dual state/output matrix B'*P.
C
C     LDC     INTEGER
C             The leading dimension of array C.
C             LDC >= MAX(1,M,P) if N > 0.
C             LDC >= 1          if N = 0.
C
C     D       (input/output) DOUBLE PRECISION array, dimension
C             (LDD,MAX(M,P))
C             On entry, if JOBD = 'D', the leading P-by-M part of this
C             array must contain the original direct transmission
C             matrix D.
C             On exit, if JOBD = 'D', the leading M-by-P part of this
C             array contains the transposed direct transmission matrix
C             D'. The array D is not referenced if JOBD = 'Z'.
C
C     LDD     INTEGER
C             The leading dimension of array D.
C             LDD >= MAX(1,M,P) if JOBD = 'D'.
C             LDD >= 1          if JOBD = 'Z'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit.
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The rows and/or columns of the matrices of the triplet (A,B,C)
C     and, optionally, of the matrix D are swapped in a special way.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1998.
C     Partly based on routine DMPTR (A. Varga, German Aerospace
C     Research Establishment, DLR, Aug. 1992).
C
C
C     REVISIONS
C
C     07-31-1998, 04-25-1999, A. Varga.
C     03-16-2004, V. Sima.
C
C     KEYWORDS
C
C     Matrix algebra, matrix operations, similarity transformation.
C
C  *********************************************************************
C
C     ..
C     .. Scalar Arguments ..
      CHARACTER          JOBD
      INTEGER            INFO, KL, KU, LDA, LDB, LDC, LDD, M, N, P
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            LJOBD
      INTEGER            J, J1, LDA1, MAXMP, MINMP, NM1
C     ..
C     .. External functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DSWAP, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
C     ..
C     .. Executable Statements ..
C
C     Test the scalar input arguments.
C
      INFO  = 0
      LJOBD = LSAME( JOBD, 'D' )
      MAXMP = MAX( M, P )
      MINMP = MIN( M, P )
      NM1   = N - 1
C
      IF( .NOT.LJOBD .AND. .NOT.LSAME( JOBD, 'Z' )  ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( KL.LT.0 .OR. KL.GT.MAX( 0, NM1 ) ) THEN
         INFO = -5
      ELSE IF( KU.LT.0 .OR. KU.GT.MAX( 0, NM1 ) ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( ( MAXMP.GT.0 .AND. LDB.LT.MAX( 1, N ) ) .OR.
     $         ( MINMP.EQ.0 .AND. LDB.LT.1 ) ) THEN
         INFO = -10
      ELSE IF( LDC.LT.1 .OR. ( N.GT.0 .AND. LDC.LT.MAXMP ) ) THEN
         INFO = -12
      ELSE IF( LDD.LT.1 .OR. ( LJOBD  .AND. LDD.LT.MAXMP ) ) THEN
         INFO = -14
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TB01XD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( LJOBD ) THEN
C
C        Replace D by D', if non-scalar.
C
         DO 5 J = 1, MAXMP
            IF ( J.LT.MINMP ) THEN
               CALL DSWAP( MINMP-J, D(J+1,J), 1, D(J,J+1), LDD )
            ELSE IF ( J.GT.P ) THEN
               CALL DCOPY( P, D(1,J), 1, D(J,1), LDD )
            ELSE IF ( J.GT.M ) THEN
               CALL DCOPY( M, D(J,1), LDD, D(1,J), 1 )
            END IF
    5    CONTINUE
C
      END IF
C
      IF( N.EQ.0 )
     $   RETURN
C
C     Replace matrix A by P*A'*P.
C
      IF ( KL.EQ.NM1 .AND. KU.EQ.NM1 ) THEN
C
C        Full matrix A.
C
         DO 10 J = 1, NM1
            CALL DSWAP( N-J, A( 1, J ), 1, A( N-J+1, J+1 ), -LDA )
   10    CONTINUE
C
      ELSE
C
C        Band matrix A.
C
         LDA1 = LDA + 1
C
C        Pertranspose the KL subdiagonals.
C
         DO 20 J = 1, MIN( KL, N-2 )
            J1 = ( N - J )/2
            CALL DSWAP( J1, A(J+1,1), LDA1, A(N-J1+1,N-J1+1-J), -LDA1 )
   20    CONTINUE
C
C        Pertranspose the KU superdiagonals.
C
         DO 30 J = 1, MIN( KU, N-2 )
            J1 = ( N - J )/2
            CALL DSWAP( J1, A(1,J+1), LDA1, A(N-J1+1-J,N-J1+1), -LDA1 )
   30    CONTINUE
C
C        Pertranspose the diagonal.
C
         J1 = N/2
         CALL DSWAP( J1, A(1,1), LDA1, A(N-J1+1,N-J1+1), -LDA1 )
C
      END IF
C
C     Replace matrix B by P*C' and matrix C by B'*P.
C
      DO 40 J = 1, MAXMP
         IF ( J.LE.MINMP ) THEN
            CALL DSWAP( N, B(1,J), 1, C(J,1), -LDC )
         ELSE IF ( J.GT.P ) THEN
            CALL DCOPY( N, B(1,J), 1, C(J,1), -LDC )
         ELSE
            CALL DCOPY( N, C(J,1), -LDC, B(1,J), 1 )
         END IF
   40 CONTINUE
C
      RETURN
C *** Last line of TB01XD ***
      END