1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
SUBROUTINE TB01YD( N, M, P, A, LDA, B, LDB, C, LDC, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To apply a special similarity transformation to a system given as
C a triple (A,B,C),
C
C A <-- P * A * P, B <-- P * B, C <-- C * P,
C
C where P is a matrix with 1 on the secondary diagonal, and with 0
C in the other entries.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A, the number of rows of matrix B
C and the number of columns of matrix C.
C N represents the dimension of the state vector. N >= 0.
C
C M (input) INTEGER.
C The number of columns of matrix B.
C M represents the dimension of input vector. M >= 0.
C
C P (input) INTEGER.
C The number of rows of matrix C.
C P represents the dimension of output vector. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the system state matrix A.
C On exit, the leading N-by-N part of this array contains
C the transformed matrix P*A*P.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the system input matrix B.
C On exit, the leading N-by-M part of this array contains
C the transformed matrix P*B.
C
C LDB INTEGER
C The leading dimension of the array B.
C LDB >= MAX(1,N) if M > 0.
C LDB >= 1 if M = 0.
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the system output matrix C.
C On exit, the leading P-by-N part of this array contains
C the transformed matrix C*P.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= MAX(1,P).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit.
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The rows and/or columns of the matrices of the triplet (A,B,C)
C are swapped in a special way.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1998.
C
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004.
C
C KEYWORDS
C
C Matrix algebra, matrix operations, similarity transformation.
C
C *********************************************************************
C
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, M, N, P
C ..
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * )
C ..
C .. Local Scalars ..
INTEGER J, NBY2
C ..
C .. External Subroutines ..
EXTERNAL DSWAP, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX, MOD
C ..
C .. Executable Statements ..
C
C Test the scalar input arguments.
C
INFO = 0
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. LDB.LT.N ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -9
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TB01YD', -INFO )
RETURN
END IF
C
IF( N.LE.1 )
$ RETURN
C
C Transform the matrix A.
C
NBY2 = N/2
C
DO 10 J = 1, NBY2
CALL DSWAP( N, A( 1, J ), -1, A( 1, N-J+1 ), 1 )
10 CONTINUE
C
IF( MOD( N, 2 ).NE.0 .AND. N.GT.2 )
$ CALL DSWAP( NBY2, A( NBY2+2, NBY2+1 ), -1, A( 1, NBY2+1 ), 1 )
C
IF( M.GT.0 ) THEN
C
C Transform the matrix B.
C
DO 20 J = 1, NBY2
CALL DSWAP( M, B( J, 1 ), LDB, B( N-J+1, 1 ), LDB )
20 CONTINUE
C
END IF
C
IF( P.GT.0 ) THEN
C
C Transform the matrix C.
C
DO 30 J = 1, NBY2
CALL DSWAP( P, C( 1, J ), 1, C( 1, N-J+1 ), 1 )
30 CONTINUE
C
END IF
C
RETURN
C *** Last line of TB01YD ***
END
|