File: TB01YD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (188 lines) | stat: -rw-r--r-- 5,323 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
      SUBROUTINE TB01YD( N, M, P, A, LDA, B, LDB, C, LDC, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To apply a special similarity transformation to a system given as
C     a triple (A,B,C),
C
C        A <-- P * A * P,  B <-- P * B,  C <-- C * P,
C
C     where P is a matrix with 1 on the secondary diagonal, and with 0
C     in the other entries.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A, the number of rows of matrix B
C             and the number of columns of matrix C.
C             N represents the dimension of the state vector.  N >= 0.
C
C     M       (input) INTEGER.
C             The number of columns of matrix B.
C             M represents the dimension of input vector.  M >= 0.
C
C     P       (input) INTEGER.
C             The number of rows of matrix C.
C             P represents the dimension of output vector.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the system state matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the transformed matrix P*A*P.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the system input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed matrix P*B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,N) if M > 0.
C             LDB >= 1        if M = 0.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the system output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed matrix C*P.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit.
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The rows and/or columns of the matrices of the triplet (A,B,C)
C     are swapped in a special way.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1998.
C
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004.
C
C     KEYWORDS
C
C     Matrix algebra, matrix operations, similarity transformation.
C
C  *********************************************************************
C
C     ..
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDC, M, N, P
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * )
C     ..
C     .. Local Scalars ..
      INTEGER            J, NBY2
C     ..
C     .. External Subroutines ..
      EXTERNAL           DSWAP, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          MAX, MOD
C     ..
C     .. Executable Statements ..
C
C     Test the scalar input arguments.
C
      INFO  = 0
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. LDB.LT.N ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -9
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TB01YD', -INFO )
         RETURN
      END IF
C
      IF( N.LE.1 )
     $   RETURN
C
C     Transform the matrix A.
C
      NBY2 = N/2
C
      DO 10 J = 1, NBY2
         CALL DSWAP( N, A( 1, J ), -1, A( 1, N-J+1 ), 1 )
   10 CONTINUE
C
      IF( MOD( N, 2 ).NE.0 .AND. N.GT.2 )
     $   CALL DSWAP( NBY2, A( NBY2+2, NBY2+1 ), -1, A( 1, NBY2+1 ), 1 )
C
      IF( M.GT.0 ) THEN
C
C        Transform the matrix B.
C
         DO 20 J = 1, NBY2
            CALL DSWAP( M, B( J, 1 ), LDB, B( N-J+1, 1 ), LDB )
   20    CONTINUE
C
      END IF
C
      IF( P.GT.0 ) THEN
C
C        Transform the matrix C.
C
         DO 30 J = 1, NBY2
            CALL DSWAP( P, C( 1, J ), 1, C( 1, N-J+1 ), 1 )
   30    CONTINUE
C
      END IF
C
      RETURN
C *** Last line of TB01YD ***
      END