1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
SUBROUTINE TB03AD( LERI, EQUIL, N, M, P, A, LDA, B, LDB, C, LDC,
$ D, LDD, NR, INDEX, PCOEFF, LDPCO1, LDPCO2,
$ QCOEFF, LDQCO1, LDQCO2, VCOEFF, LDVCO1, LDVCO2,
$ TOL, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To find a relatively prime left polynomial matrix representation
C inv(P(s))*Q(s) or right polynomial matrix representation
C Q(s)*inv(P(s)) with the same transfer matrix T(s) as that of a
C given state-space representation, i.e.
C
C inv(P(s))*Q(s) = Q(s)*inv(P(s)) = T(s) = C*inv(s*I-A)*B + D.
C
C ARGUMENTS
C
C Mode Parameters
C
C LERI CHARACTER*1
C Indicates whether the left polynomial matrix
C representation or the right polynomial matrix
C representation is required as follows:
C = 'L': A left matrix fraction is required;
C = 'R': A right matrix fraction is required.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to balance the triplet
C (A,B,C), before computing a minimal state-space
C representation, as follows:
C = 'S': Perform balancing (scaling);
C = 'N': Do not perform balancing.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the state-space representation, i.e. the
C order of the original state dynamics matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the original state dynamics matrix A.
C On exit, the leading NR-by-NR part of this array contains
C the upper block Hessenberg state dynamics matrix Amin of a
C minimal realization for the original system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension
C (LDB,MAX(M,P))
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B; the remainder
C of the leading N-by-MAX(M,P) part is used as internal
C workspace.
C On exit, the leading NR-by-M part of this array contains
C the transformed input/state matrix Bmin.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C; the remainder
C of the leading MAX(M,P)-by-N part is used as internal
C workspace.
C On exit, the leading P-by-NR part of this array contains
C the transformed state/output matrix Cmin.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,M,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,MAX(M,P))
C The leading P-by-M part of this array must contain the
C original direct transmission matrix D; the remainder of
C the leading MAX(M,P)-by-MAX(M,P) part is used as internal
C workspace.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,M,P).
C
C NR (output) INTEGER
C The order of the minimal state-space representation
C (Amin,Bmin,Cmin).
C
C INDEX (output) INTEGER array, dimension (P), if LERI = 'L', or
C dimension (M), if LERI = 'R'.
C If LERI = 'L', INDEX(I), I = 1,2,...,P, contains the
C maximum degree of the polynomials in the I-th row of the
C denominator matrix P(s) of the left polynomial matrix
C representation.
C These elements are ordered so that
C INDEX(1) >= INDEX(2) >= ... >= INDEX(P).
C If LERI = 'R', INDEX(I), I = 1,2,...,M, contains the
C maximum degree of the polynomials in the I-th column of
C the denominator matrix P(s) of the right polynomial
C matrix representation.
C These elements are ordered so that
C INDEX(1) >= INDEX(2) >= ... >= INDEX(M).
C
C PCOEFF (output) DOUBLE PRECISION array, dimension
C (LDPCO1,LDPCO2,N+1)
C If LERI = 'L' then porm = P, otherwise porm = M.
C The leading porm-by-porm-by-kpcoef part of this array
C contains the coefficients of the denominator matrix P(s),
C where kpcoef = MAX(INDEX(I)) + 1.
C PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
C of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if
C LERI = 'L' then iorj = I, otherwise iorj = J.
C Thus for LERI = 'L', P(s) =
C diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...).
C
C LDPCO1 INTEGER
C The leading dimension of array PCOEFF.
C LDPCO1 >= MAX(1,P), if LERI = 'L';
C LDPCO1 >= MAX(1,M), if LERI = 'R'.
C
C LDPCO2 INTEGER
C The second dimension of array PCOEFF.
C LDPCO2 >= MAX(1,P), if LERI = 'L';
C LDPCO2 >= MAX(1,M), if LERI = 'R'.
C
C QCOEFF (output) DOUBLE PRECISION array, dimension
C (LDQCO1,LDQCO2,N+1)
C If LERI = 'L' then porp = M, otherwise porp = P.
C If LERI = 'L', the leading porm-by-porp-by-kpcoef part
C of this array contains the coefficients of the numerator
C matrix Q(s).
C If LERI = 'R', the leading porp-by-porm-by-kpcoef part
C of this array contains the coefficients of the numerator
C matrix Q(s).
C QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
C
C LDQCO1 INTEGER
C The leading dimension of array QCOEFF.
C LDQCO1 >= MAX(1,P), if LERI = 'L';
C LDQCO1 >= MAX(1,M,P), if LERI = 'R'.
C
C LDQCO2 INTEGER
C The second dimension of array QCOEFF.
C LDQCO2 >= MAX(1,M), if LERI = 'L';
C LDQCO2 >= MAX(1,M,P), if LERI = 'R'.
C
C VCOEFF (output) DOUBLE PRECISION array, dimension
C (LDVCO1,LDVCO2,N+1)
C The leading porm-by-NR-by-kpcoef part of this array
C contains the coefficients of the intermediate matrix V(s).
C VCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
C
C LDVCO1 INTEGER
C The leading dimension of array VCOEFF.
C LDVCO1 >= MAX(1,P), if LERI = 'L';
C LDVCO1 >= MAX(1,M), if LERI = 'R'.
C
C LDVCO2 INTEGER
C The second dimension of array VCOEFF. LDVCO2 >= MAX(1,N).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in rank determination when
C transforming (A, B, C). If the user sets TOL > 0, then
C the given value of TOL is used as a lower bound for the
C reciprocal condition number (see the description of the
C argument RCOND in the SLICOT routine MB03OD); a
C (sub)matrix whose estimated condition number is less than
C 1/TOL is considered to be of full rank. If the user sets
C TOL <= 0, then an implicitly computed, default tolerance
C (determined by the SLICOT routine TB01UD) is used instead.
C
C Workspace
C
C IWORK INTEGER array, dimension (N+MAX(M,P))
C On exit, if INFO = 0, the first nonzero elements of
C IWORK(1:N) return the orders of the diagonal blocks of A.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1, N + MAX(N, 3*M, 3*P), PM*(PM + 2))
C where PM = P, if LERI = 'L';
C PM = M, if LERI = 'R'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if a singular matrix was encountered during the
C computation of V(s);
C = 2: if a singular matrix was encountered during the
C computation of P(s).
C
C METHOD
C
C The method for a left matrix fraction will be described here:
C right matrix fractions are dealt with by constructing a left
C fraction for the dual of the original system. The first step is to
C obtain, by means of orthogonal similarity transformations, a
C minimal state-space representation (Amin,Bmin,Cmin,D) for the
C original system (A,B,C,D), where Amin is lower block Hessenberg
C with all its superdiagonal blocks upper triangular and Cmin has
C all but its first rank(C) columns zero. The number and dimensions
C of the blocks of Amin now immediately yield the row degrees of
C P(s) with P(s) row proper: furthermore, the P-by-NR polynomial
C matrix V(s) (playing a similar role to S(s) in Wolovich's
C Structure Theorem) can be calculated a column block at a time, in
C reverse order, from Amin. P(s) is then found as if it were the
C O-th column block of V(s) (using Cmin as well as Amin), while
C Q(s) = (V(s) * Bmin) + (P(s) * D). Finally, a special similarity
C transformation is used to put Amin in an upper block Hessenberg
C form.
C
C REFERENCES
C
C [1] Williams, T.W.C.
C An Orthogonal Structure Theorem for Linear Systems.
C Kingston Polytechnic Control Systems Research Group,
C Internal Report 82/2, July 1982.
C
C [2] Patel, R.V.
C On Computing Matrix Fraction Descriptions and Canonical
C Forms of Linear Time-Invariant Systems.
C UMIST Control Systems Centre Report 489, 1980.
C (Algorithms 1 and 2, extensively modified).
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, March 1998.
C Supersedes Release 3.0 routine TB01SD.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2000.
C
C KEYWORDS
C
C Canonical form, coprime matrix fraction, dual system, elementary
C polynomial operations, Hessenberg form, minimal realization,
C orthogonal transformation, polynomial matrix, state-space
C representation, transfer matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER EQUIL, LERI
INTEGER INFO, LDA, LDB, LDC, LDD, LDPCO1, LDPCO2,
$ LDQCO1, LDQCO2, LDVCO1, LDVCO2, LDWORK, M, N,
$ NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER INDEX(*), IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), PCOEFF(LDPCO1,LDPCO2,*),
$ QCOEFF(LDQCO1,LDQCO2,*), VCOEFF(LDVCO1,LDVCO2,*)
C .. Local Scalars ..
LOGICAL LEQUIL, LLERIL, LLERIR
INTEGER I, IC, IFIRST, INDBLK, INPLUS, IOFF, IRANKC,
$ ISTART, ISTOP, ITAU, IZ, JOFF, JWORK, K, KMAX,
$ KPCOEF, KPLUS, KWORK, LDWRIC, MAXMP, MPLIM,
$ MWORK, NCOL, NCONT, NREFLC, NROW, PWORK, WRKOPT
DOUBLE PRECISION MAXRED
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL AB07MD, DGEMM, DGEQRF, DGETRF, DLACPY, DLASET,
$ DORMQR, DTRSM, MA02GD, TB01ID, TB01UD, TB01YD,
$ TB03AY, TC01OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C .. Executable Statements ..
C
INFO = 0
LLERIL = LSAME( LERI, 'L' )
LLERIR = LSAME( LERI, 'R' )
LEQUIL = LSAME( EQUIL, 'S' )
MAXMP = MAX( M, P )
MPLIM = MAX( 1, MAXMP )
IF ( LLERIR ) THEN
C
C Initialization for right matrix fraction.
C
PWORK = M
MWORK = P
ELSE
C
C Initialization for left matrix fraction.
C
PWORK = P
MWORK = M
END IF
C
C Test the input scalar arguments.
C
IF( .NOT.LLERIL .AND. .NOT.LLERIR ) THEN
INFO = -1
ELSE IF( .NOT.LEQUIL .AND. .NOT.LSAME( EQUIL, 'N' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( P.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MPLIM ) THEN
INFO = -11
ELSE IF( LDD.LT.MPLIM ) THEN
INFO = -13
ELSE IF( LDPCO1.LT.MAX( 1, PWORK ) ) THEN
INFO = -17
ELSE IF( LDPCO2.LT.MAX( 1, PWORK ) ) THEN
INFO = -18
ELSE IF( LDQCO1.LT.MAX( 1, PWORK ) .OR. LLERIR .AND.
$ LDQCO1.LT.MPLIM ) THEN
INFO = -20
ELSE IF( LDQCO2.LT.MAX( 1, MWORK ) .OR. LLERIR .AND.
$ LDQCO2.LT.MPLIM ) THEN
INFO = -21
ELSE IF( LDVCO1.LT.MAX( 1, PWORK ) ) THEN
INFO = -23
ELSE IF( LDVCO2.LT.MAX( 1, N ) ) THEN
INFO = -24
ELSE IF( LDWORK.LT.MAX( 1, N + MAX( N, 3*MAXMP ),
$ PWORK*( PWORK + 2 ) ) ) THEN
INFO = -28
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TB03AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MAX( N, M, P ).EQ.0 ) THEN
NR = 0
DWORK(1) = ONE
RETURN
END IF
C
IF ( LLERIR ) THEN
C
C For right matrix fraction, obtain dual system.
C
CALL AB07MD( 'D', N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
$ INFO )
END IF
C
C Obtain minimal realization, in canonical form, for this system.
C Part of the code in SLICOT routine TB01PD is included in-line
C here. (TB01PD cannot be directly used.)
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
C If required, balance the triplet (A,B,C) (default MAXRED).
C Workspace: need N.
C
IF ( LEQUIL ) THEN
MAXRED = ZERO
CALL TB01ID( 'A', N, MWORK, PWORK, MAXRED, A, LDA, B, LDB, C,
$ LDC, DWORK, INFO )
END IF
C
IZ = 1
ITAU = 1
JWORK = ITAU + N
C
C Separate out controllable subsystem (of order NCONT):
C A <-- Z'*A*Z, B <-- Z'*B, C <-- C*Z.
C
C Workspace: need N + MAX(N, 3*MWORK, PWORK).
C prefer larger.
C
CALL TB01UD( 'No Z', N, MWORK, PWORK, A, LDA, B, LDB, C, LDC,
$ NCONT, INDBLK, IWORK, DWORK(IZ), 1, DWORK(ITAU), TOL,
$ IWORK(N+1), DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = INT( DWORK(JWORK) ) + JWORK - 1
C
C Separate out the observable subsystem (of order NR):
C Form the dual of the subsystem of order NCONT (which is
C controllable), leaving rest as it is.
C
CALL AB07MD( 'Z', NCONT, MWORK, PWORK, A, LDA, B, LDB, C, LDC,
$ DWORK, 1, INFO )
C
C And separate out the controllable part of this dual subsystem.
C
C Workspace: need NCONT + MAX(NCONT, 3*PWORK, MWORK).
C prefer larger.
C
CALL TB01UD( 'No Z', NCONT, PWORK, MWORK, A, LDA, B, LDB, C, LDC,
$ NR, INDBLK, IWORK, DWORK(IZ), 1, DWORK(ITAU), TOL,
$ IWORK(N+1), DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Retranspose, giving controllable and observable (i.e. minimal)
C part of original system.
C
CALL AB07MD( 'Z', NR, PWORK, MWORK, A, LDA, B, LDB, C, LDC, DWORK,
$ 1, INFO )
C
C Annihilate the trailing components of IWORK(1:N).
C
DO 10 I = INDBLK + 1, N
IWORK(I) = 0
10 CONTINUE
C
C Initialize polynomial matrices P(s), Q(s) and V(s) to zero.
C
DO 20 K = 1, N + 1
CALL DLASET( 'Full', PWORK, PWORK, ZERO, ZERO, PCOEFF(1,1,K),
$ LDPCO1 )
CALL DLASET( 'Full', PWORK, MWORK, ZERO, ZERO, QCOEFF(1,1,K),
$ LDQCO1 )
CALL DLASET( 'Full', PWORK, NR, ZERO, ZERO, VCOEFF(1,1,K),
$ LDVCO1 )
20 CONTINUE
C
C Finish initializing V(s), and set up row degrees of P(s).
C
INPLUS = INDBLK + 1
ISTART = 1
JOFF = NR
C
DO 40 K = 1, INDBLK
KWORK = INPLUS - K
KPLUS = KWORK + 1
ISTOP = IWORK(KWORK)
JOFF = JOFF - ISTOP
C
DO 30 I = ISTART, ISTOP
INDEX(I) = KWORK
VCOEFF(I,JOFF+I,KPLUS) = ONE
30 CONTINUE
C
ISTART = ISTOP + 1
40 CONTINUE
C
C ISTART = IWORK(1)+1 now: if .LE. PWORK, set up final rows of P(s).
C
DO 50 I = ISTART, PWORK
INDEX(I) = 0
PCOEFF(I,I,1) = ONE
50 CONTINUE
C
C Triangularize the superdiagonal blocks of Amin.
C
NROW = IWORK(INDBLK)
IOFF = NR - NROW
KMAX = INDBLK - 1
ITAU = 1
IFIRST = 0
IF ( INDBLK.GT.2 ) IFIRST = IOFF - IWORK(KMAX)
C
C QR decomposition of each superdiagonal block of A in turn
C (done in reverse order to preserve upper triangular blocks in A).
C
DO 60 K = 1, KMAX
C
C Calculate dimensions of new block & its position in A.
C
KWORK = INDBLK - K
NCOL = NROW
NROW = IWORK(KWORK)
JOFF = IOFF
IOFF = IOFF - NROW
NREFLC = MIN( NROW, NCOL )
JWORK = ITAU + NREFLC
IF ( KWORK.GE.2 ) IFIRST = IFIRST - IWORK(KWORK-1)
C
C Find QR decomposition of this (full rank) block:
C block = QR. No pivoting is needed.
C
C Workspace: need MIN(NROW,NCOL) + NCOL;
C prefer MIN(NROW,NCOL) + NCOL*NB.
C
CALL DGEQRF( NROW, NCOL, A(IOFF+1,JOFF+1), LDA, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Premultiply appropriate row block of A by Q'.
C
C Workspace: need MIN(NROW,NCOL) + JOFF;
C prefer MIN(NROW,NCOL) + JOFF*NB.
C
CALL DORMQR( 'Left', 'Transpose', NROW, JOFF, NREFLC,
$ A(IOFF+1,JOFF+1), LDA, DWORK(ITAU), A(IOFF+1,1),
$ LDA, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Premultiply appropriate row block of B by Q' also.
C
C Workspace: need MIN(NROW,NCOL) + MWORK;
C prefer MIN(NROW,NCOL) + MWORK*NB.
C
CALL DORMQR( 'Left', 'Transpose', NROW, MWORK, NREFLC,
$ A(IOFF+1,JOFF+1), LDA, DWORK(ITAU), B(IOFF+1,1),
$ LDB, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C And postmultiply the non-zero part of appropriate column
C block of A by Q.
C
C Workspace: need MIN(NROW,NCOL) + NR;
C prefer MIN(NROW,NCOL) + NR*NB.
C
CALL DORMQR( 'Right', 'No Transpose', NR-IFIRST, NROW, NREFLC,
$ A(IOFF+1,JOFF+1), LDA, DWORK(ITAU),
$ A(IFIRST+1,IOFF+1), LDA, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Annihilate the lower triangular part of the block in A.
C
IF ( K.NE.KMAX .AND. NROW.GT.1 )
$ CALL DLASET( 'Lower', NROW-1, NCOL, ZERO, ZERO,
$ A(IOFF+2,JOFF+1), LDA )
C
60 CONTINUE
C
C Finally: postmultiply non-zero columns of C by Q (K = KMAX).
C
C Workspace: need MIN(NROW,NCOL) + PWORK;
C prefer MIN(NROW,NCOL) + PWORK*NB.
C
CALL DORMQR( 'Right', 'No Transpose', PWORK, NROW, NREFLC,
$ A(IOFF+1,JOFF+1), LDA, DWORK(ITAU), C, LDC,
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Annihilate the lower triangular part of the block in A.
C
IF ( NROW.GT.1 )
$ CALL DLASET( 'Lower', NROW-1, NCOL, ZERO, ZERO,
$ A(IOFF+2,JOFF+1), LDA )
C
C Calculate the (PWORK x NR) polynomial matrix V(s) ...
C
CALL TB03AY( NR, A, LDA, INDBLK, IWORK, VCOEFF, LDVCO1, LDVCO2,
$ PCOEFF, LDPCO1, LDPCO2, INFO)
C
IF ( INFO.NE.0 ) THEN
INFO = 1
RETURN
ELSE
C
C And then use this matrix to calculate P(s): first store
C C1 from C.
C
IC = 1
IRANKC = IWORK(1)
LDWRIC = MAX( 1, PWORK )
CALL DLACPY( 'Full', PWORK, IRANKC, C, LDC, DWORK(IC), LDWRIC )
C
IF ( IRANKC.LT.PWORK ) THEN
C
C rank(C) .LT. PWORK: obtain QR decomposition of C1,
C giving R and Q.
C
C Workspace: need PWORK*IRANKC + 2*IRANKC;
C prefer PWORK*IRANKC + IRANKC + IRANKC*NB.
C
ITAU = IC + LDWRIC*IRANKC
JWORK = ITAU + IRANKC
C
CALL DGEQRF( PWORK, IRANKC, DWORK(IC), LDWRIC, DWORK(ITAU),
$ DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C First IRANKC rows of Pbar(s) are given by Wbar(s) * inv(R).
C Check for zero diagonal elements of R.
C
DO 70 I = 1, IRANKC
IF ( DWORK(IC+(I-1)*LDWRIC+I-1).EQ.ZERO ) THEN
C
C Error return.
C
INFO = 2
RETURN
END IF
70 CONTINUE
C
NROW = IRANKC
C
DO 80 K = 1, INPLUS
CALL DTRSM( 'Right', 'Upper', 'No Transpose', 'Non-unit',
$ NROW, IRANKC, ONE, DWORK(IC), LDWRIC,
$ PCOEFF(1,1,K), LDPCO1 )
NROW = IWORK(K)
80 CONTINUE
C
C P(s) itself is now given by Pbar(s) * Q'.
C
NROW = PWORK
C
DO 90 K = 1, INPLUS
C
C Workspace: need PWORK*IRANKC + IRANKC + NROW;
C prefer PWORK*IRANKC + IRANKC + NROW*NB.
C
CALL DORMQR( 'Right', 'Transpose', NROW, PWORK, IRANKC,
$ DWORK(IC), LDWRIC, DWORK(ITAU),
$ PCOEFF(1,1,K), LDPCO1, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
NROW = IWORK(K)
90 CONTINUE
C
ELSE
C
C Special case rank(C) = PWORK, full:
C no QR decomposition (P(s)=Wbar(s)*inv(C1)).
C
CALL DGETRF( PWORK, PWORK, DWORK(IC), LDWRIC, IWORK(N+1),
$ INFO )
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
INFO = 2
RETURN
ELSE
C
NROW = IRANKC
C
C Workspace: need PWORK*IRANKC + N.
C
DO 100 K = 1, INPLUS
CALL DTRSM( 'Right', 'Upper', 'No Transpose',
$ 'Non-unit', NROW, PWORK, ONE, DWORK(IC),
$ LDWRIC, PCOEFF(1,1,K), LDPCO1 )
CALL DTRSM( 'Right', 'Lower', 'No Transpose', 'Unit',
$ NROW, PWORK, ONE, DWORK(IC), LDWRIC,
$ PCOEFF(1,1,K), LDPCO1 )
CALL MA02GD( NROW, PCOEFF(1,1,K), LDPCO1, 1, PWORK,
$ IWORK(N+1), -1 )
NROW = IWORK(K)
100 CONTINUE
END IF
END IF
C
C Finally, Q(s) = V(s) * B + P(s) * D can now be evaluated.
C
NROW = PWORK
C
DO 110 K = 1, INPLUS
CALL DGEMM( 'No transpose', 'No transpose', NROW, MWORK,
$ NR, ONE, VCOEFF(1,1,K), LDVCO1, B, LDB, ZERO,
$ QCOEFF(1,1,K), LDQCO1 )
CALL DGEMM( 'No transpose', 'No transpose', NROW, MWORK,
$ PWORK, ONE, PCOEFF(1,1,K), LDPCO1, D, LDD, ONE,
$ QCOEFF(1,1,K), LDQCO1 )
NROW = IWORK(K)
110 CONTINUE
C
END IF
C
IF ( LLERIR ) THEN
C
C For right matrix fraction, return to original (dual of dual)
C system.
C
CALL AB07MD( 'Z', NR, MWORK, PWORK, A, LDA, B, LDB, C, LDC,
$ DWORK, 1, INFO )
C
C Also, obtain the dual of the polynomial matrix representation.
C
KPCOEF = 0
C
DO 120 I = 1, PWORK
KPCOEF = MAX( KPCOEF, INDEX(I) )
120 CONTINUE
C
KPCOEF = KPCOEF + 1
CALL TC01OD( 'L', MWORK, PWORK, KPCOEF, PCOEFF, LDPCO1,
$ LDPCO2, QCOEFF, LDQCO1, LDQCO2, INFO )
ELSE
C
C Reorder the rows and columns of the system, to get an upper
C block Hessenberg matrix A of the minimal system.
C
CALL TB01YD( NR, M, P, A, LDA, B, LDB, C, LDC, INFO )
END IF
C
C Set optimal workspace dimension.
C
DWORK(1) = WRKOPT
RETURN
C *** Last line of TB03AD ***
END
|