File: TB03AD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (746 lines) | stat: -rw-r--r-- 26,834 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
      SUBROUTINE TB03AD( LERI, EQUIL, N, M, P, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, NR, INDEX, PCOEFF, LDPCO1, LDPCO2,
     $                   QCOEFF, LDQCO1, LDQCO2, VCOEFF, LDVCO1, LDVCO2,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To find a relatively prime left polynomial matrix representation
C     inv(P(s))*Q(s) or right polynomial matrix representation
C     Q(s)*inv(P(s)) with the same transfer matrix T(s) as that of a
C     given state-space representation, i.e.
C
C        inv(P(s))*Q(s) = Q(s)*inv(P(s)) = T(s) = C*inv(s*I-A)*B + D.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     LERI    CHARACTER*1
C             Indicates whether the left polynomial matrix
C             representation or the right polynomial matrix
C             representation is required as follows:
C             = 'L':  A left matrix fraction is required;
C             = 'R':  A right matrix fraction is required.
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to balance the triplet
C             (A,B,C), before computing a minimal state-space
C             representation, as follows:
C             = 'S':  Perform balancing (scaling);
C             = 'N':  Do not perform balancing.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the state-space representation, i.e. the
C             order of the original state dynamics matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the original state dynamics matrix A.
C             On exit, the leading NR-by-NR part of this array contains
C             the upper block Hessenberg state dynamics matrix Amin of a
C             minimal realization for the original system.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension
C             (LDB,MAX(M,P))
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B; the remainder
C             of the leading N-by-MAX(M,P) part is used as internal
C             workspace.
C             On exit, the leading NR-by-M part of this array contains
C             the transformed input/state matrix Bmin.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C; the remainder
C             of the leading MAX(M,P)-by-N part is used as internal
C             workspace.
C             On exit, the leading P-by-NR part of this array contains
C             the transformed state/output matrix Cmin.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,M,P).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,MAX(M,P))
C             The leading P-by-M part of this array must contain the
C             original direct transmission matrix D; the remainder of
C             the leading MAX(M,P)-by-MAX(M,P) part is used as internal
C             workspace.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,M,P).
C
C     NR      (output) INTEGER
C             The order of the minimal state-space representation
C             (Amin,Bmin,Cmin).
C
C     INDEX   (output) INTEGER array, dimension (P), if LERI = 'L', or
C                                     dimension (M), if LERI = 'R'.
C             If LERI = 'L', INDEX(I), I = 1,2,...,P, contains the
C             maximum degree of the polynomials in the I-th row of the
C             denominator matrix P(s) of the left polynomial matrix
C             representation.
C             These elements are ordered so that
C             INDEX(1) >= INDEX(2) >= ... >= INDEX(P).
C             If LERI = 'R', INDEX(I), I = 1,2,...,M, contains the
C             maximum degree of the polynomials in the I-th column of
C             the denominator matrix P(s) of the right polynomial
C             matrix representation.
C             These elements are ordered so that
C             INDEX(1) >= INDEX(2) >= ... >= INDEX(M).
C
C     PCOEFF  (output) DOUBLE PRECISION array, dimension
C             (LDPCO1,LDPCO2,N+1)
C             If LERI = 'L' then porm = P, otherwise porm = M.
C             The leading porm-by-porm-by-kpcoef part of this array
C             contains the coefficients of the denominator matrix P(s),
C             where kpcoef = MAX(INDEX(I)) + 1.
C             PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
C             of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if
C             LERI = 'L' then iorj = I, otherwise iorj = J.
C             Thus for LERI = 'L', P(s) =
C             diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...).
C
C     LDPCO1  INTEGER
C             The leading dimension of array PCOEFF.
C             LDPCO1 >= MAX(1,P), if LERI = 'L';
C             LDPCO1 >= MAX(1,M), if LERI = 'R'.
C
C     LDPCO2  INTEGER
C             The second dimension of array PCOEFF.
C             LDPCO2 >= MAX(1,P), if LERI = 'L';
C             LDPCO2 >= MAX(1,M), if LERI = 'R'.
C
C     QCOEFF  (output) DOUBLE PRECISION array, dimension
C             (LDQCO1,LDQCO2,N+1)
C             If LERI = 'L' then porp = M, otherwise porp = P.
C             If LERI = 'L', the leading porm-by-porp-by-kpcoef part
C             of this array contains the coefficients of the numerator
C             matrix Q(s).
C             If LERI = 'R', the leading porp-by-porm-by-kpcoef part
C             of this array contains the coefficients of the numerator
C             matrix Q(s).
C             QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
C
C     LDQCO1  INTEGER
C             The leading dimension of array QCOEFF.
C             LDQCO1 >= MAX(1,P),   if LERI = 'L';
C             LDQCO1 >= MAX(1,M,P), if LERI = 'R'.
C
C     LDQCO2  INTEGER
C             The second dimension of array QCOEFF.
C             LDQCO2 >= MAX(1,M),   if LERI = 'L';
C             LDQCO2 >= MAX(1,M,P), if LERI = 'R'.
C
C     VCOEFF  (output) DOUBLE PRECISION array, dimension
C             (LDVCO1,LDVCO2,N+1)
C             The leading porm-by-NR-by-kpcoef part of this array
C             contains the coefficients of the intermediate matrix V(s).
C             VCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
C
C     LDVCO1  INTEGER
C             The leading dimension of array VCOEFF.
C             LDVCO1 >= MAX(1,P), if LERI = 'L';
C             LDVCO1 >= MAX(1,M), if LERI = 'R'.
C
C     LDVCO2  INTEGER
C             The second dimension of array VCOEFF.  LDVCO2 >= MAX(1,N).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in rank determination when
C             transforming (A, B, C). If the user sets TOL > 0, then
C             the given value of TOL is used as a lower bound for the
C             reciprocal condition number (see the description of the
C             argument RCOND in the SLICOT routine MB03OD);  a
C             (sub)matrix whose estimated condition number is less than
C             1/TOL is considered to be of full rank.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance
C             (determined by the SLICOT routine TB01UD) is used instead.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N+MAX(M,P))
C             On exit, if INFO = 0, the first nonzero elements of
C             IWORK(1:N) return the orders of the diagonal blocks of A.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1, N + MAX(N, 3*M, 3*P), PM*(PM + 2))
C             where  PM = P, if LERI = 'L';
C                    PM = M, if LERI = 'R'.
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if a singular matrix was encountered during the
C                   computation of V(s);
C             = 2:  if a singular matrix was encountered during the
C                   computation of P(s).
C
C     METHOD
C
C     The method for a left matrix fraction will be described here:
C     right matrix fractions are dealt with by constructing a left
C     fraction for the dual of the original system. The first step is to
C     obtain, by means of orthogonal similarity transformations, a
C     minimal state-space representation (Amin,Bmin,Cmin,D) for the
C     original system (A,B,C,D), where Amin is lower block Hessenberg
C     with all its superdiagonal blocks upper triangular and Cmin has
C     all but its first rank(C) columns zero.  The number and dimensions
C     of the blocks of Amin now immediately yield the row degrees of
C     P(s) with P(s) row proper: furthermore, the P-by-NR polynomial
C     matrix V(s) (playing a similar role to S(s) in Wolovich's
C     Structure Theorem) can be calculated a column block at a time, in
C     reverse order, from Amin. P(s) is then found as if it were the
C     O-th column block of V(s) (using Cmin as well as Amin), while
C     Q(s) = (V(s) * Bmin) + (P(s) * D). Finally, a special similarity
C     transformation is used to put Amin in an upper block Hessenberg
C     form.
C
C     REFERENCES
C
C     [1] Williams, T.W.C.
C         An Orthogonal Structure Theorem for Linear Systems.
C         Kingston Polytechnic Control Systems Research Group,
C         Internal Report 82/2, July 1982.
C
C     [2] Patel, R.V.
C         On Computing Matrix Fraction Descriptions and Canonical
C         Forms of Linear Time-Invariant Systems.
C         UMIST Control Systems Centre Report 489, 1980.
C         (Algorithms 1 and 2, extensively modified).
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, March 1998.
C     Supersedes Release 3.0 routine TB01SD.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2000.
C
C     KEYWORDS
C
C     Canonical form, coprime matrix fraction, dual system, elementary
C     polynomial operations, Hessenberg form, minimal realization,
C     orthogonal transformation, polynomial matrix, state-space
C     representation, transfer matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         EQUIL, LERI
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDPCO1, LDPCO2,
     $                  LDQCO1, LDQCO2, LDVCO1, LDVCO2, LDWORK, M, N,
     $                  NR, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           INDEX(*), IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), PCOEFF(LDPCO1,LDPCO2,*),
     $                  QCOEFF(LDQCO1,LDQCO2,*), VCOEFF(LDVCO1,LDVCO2,*)
C     .. Local Scalars ..
      LOGICAL           LEQUIL, LLERIL, LLERIR
      INTEGER           I, IC, IFIRST, INDBLK, INPLUS, IOFF, IRANKC,
     $                  ISTART, ISTOP, ITAU, IZ, JOFF, JWORK, K, KMAX,
     $                  KPCOEF, KPLUS, KWORK, LDWRIC, MAXMP, MPLIM,
     $                  MWORK, NCOL, NCONT, NREFLC, NROW, PWORK, WRKOPT
      DOUBLE PRECISION  MAXRED
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          AB07MD, DGEMM, DGEQRF, DGETRF, DLACPY, DLASET,
     $                  DORMQR, DTRSM, MA02GD, TB01ID, TB01UD, TB01YD,
     $                  TB03AY, TC01OD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX
C     .. Executable Statements ..
C
      INFO   = 0
      LLERIL = LSAME( LERI,  'L' )
      LLERIR = LSAME( LERI,  'R' )
      LEQUIL = LSAME( EQUIL, 'S' )
      MAXMP  = MAX( M, P )
      MPLIM  = MAX( 1, MAXMP )
      IF ( LLERIR ) THEN
C
C        Initialization for right matrix fraction.
C
         PWORK = M
         MWORK = P
      ELSE
C
C        Initialization for left matrix fraction.
C
         PWORK = P
         MWORK = M
      END IF
C
C     Test the input scalar arguments.
C
      IF( .NOT.LLERIL .AND. .NOT.LLERIR ) THEN
         INFO = -1
      ELSE IF( .NOT.LEQUIL .AND. .NOT.LSAME( EQUIL, 'N' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MPLIM ) THEN
         INFO = -11
      ELSE IF( LDD.LT.MPLIM ) THEN
         INFO = -13
      ELSE IF( LDPCO1.LT.MAX( 1, PWORK ) ) THEN
         INFO = -17
      ELSE IF( LDPCO2.LT.MAX( 1, PWORK ) ) THEN
         INFO = -18
      ELSE IF( LDQCO1.LT.MAX( 1, PWORK ) .OR. LLERIR .AND.
     $         LDQCO1.LT.MPLIM ) THEN
         INFO = -20
      ELSE IF( LDQCO2.LT.MAX( 1, MWORK ) .OR. LLERIR .AND.
     $         LDQCO2.LT.MPLIM ) THEN
         INFO = -21
      ELSE IF( LDVCO1.LT.MAX( 1, PWORK ) ) THEN
         INFO = -23
      ELSE IF( LDVCO2.LT.MAX( 1, N ) ) THEN
         INFO = -24
      ELSE IF( LDWORK.LT.MAX( 1, N + MAX( N, 3*MAXMP ),
     $                           PWORK*( PWORK + 2 ) ) ) THEN
         INFO = -28
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TB03AD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MAX( N, M, P ).EQ.0 ) THEN
         NR = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
      IF ( LLERIR ) THEN
C
C        For right matrix fraction, obtain dual system.
C
         CALL AB07MD( 'D', N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
     $                INFO )
      END IF
C
C     Obtain minimal realization, in canonical form, for this system.
C     Part of the code in SLICOT routine TB01PD is included in-line
C     here. (TB01PD cannot be directly used.)
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
C     If required, balance the triplet (A,B,C) (default MAXRED).
C     Workspace: need N.
C
      IF ( LEQUIL ) THEN
         MAXRED = ZERO
         CALL TB01ID( 'A', N, MWORK, PWORK, MAXRED, A, LDA, B, LDB, C,
     $                LDC, DWORK, INFO )
      END IF
C
      IZ    = 1
      ITAU  = 1
      JWORK = ITAU + N
C
C     Separate out controllable subsystem (of order NCONT):
C     A <-- Z'*A*Z,  B <-- Z'*B,  C <-- C*Z.
C
C     Workspace: need   N + MAX(N, 3*MWORK, PWORK).
C                prefer larger.
C
      CALL TB01UD( 'No Z', N, MWORK, PWORK, A, LDA, B, LDB, C, LDC,
     $             NCONT, INDBLK, IWORK, DWORK(IZ), 1, DWORK(ITAU), TOL,
     $             IWORK(N+1), DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
      WRKOPT = INT( DWORK(JWORK) ) + JWORK - 1
C
C     Separate out the observable subsystem (of order NR):
C     Form the dual of the subsystem of order NCONT (which is
C     controllable), leaving rest as it is.
C
      CALL AB07MD( 'Z', NCONT, MWORK, PWORK, A, LDA, B, LDB, C, LDC,
     $             DWORK, 1, INFO )
C
C     And separate out the controllable part of this dual subsystem.
C
C     Workspace: need   NCONT + MAX(NCONT, 3*PWORK, MWORK).
C                prefer larger.
C
      CALL TB01UD( 'No Z', NCONT, PWORK, MWORK, A, LDA, B, LDB, C, LDC,
     $             NR, INDBLK, IWORK, DWORK(IZ), 1, DWORK(ITAU), TOL,
     $             IWORK(N+1), DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C     Retranspose, giving controllable and observable (i.e. minimal)
C     part of original system.
C
      CALL AB07MD( 'Z', NR, PWORK, MWORK, A, LDA, B, LDB, C, LDC, DWORK,
     $             1, INFO )
C
C     Annihilate the trailing components of IWORK(1:N).
C
      DO 10 I = INDBLK + 1, N
         IWORK(I) = 0
   10 CONTINUE
C
C     Initialize polynomial matrices P(s), Q(s) and V(s) to zero.
C
      DO 20 K = 1, N + 1
         CALL DLASET( 'Full', PWORK, PWORK, ZERO, ZERO, PCOEFF(1,1,K),
     $                LDPCO1 )
         CALL DLASET( 'Full', PWORK, MWORK, ZERO, ZERO, QCOEFF(1,1,K),
     $                LDQCO1 )
         CALL DLASET( 'Full', PWORK, NR, ZERO, ZERO, VCOEFF(1,1,K),
     $                LDVCO1 )
   20 CONTINUE
C
C     Finish initializing V(s), and set up row degrees of P(s).
C
      INPLUS = INDBLK + 1
      ISTART = 1
      JOFF = NR
C
      DO 40 K = 1, INDBLK
         KWORK = INPLUS - K
         KPLUS = KWORK + 1
         ISTOP = IWORK(KWORK)
         JOFF  = JOFF - ISTOP
C
         DO 30 I = ISTART, ISTOP
            INDEX(I) = KWORK
            VCOEFF(I,JOFF+I,KPLUS) = ONE
   30    CONTINUE
C
         ISTART = ISTOP + 1
   40 CONTINUE
C
C     ISTART = IWORK(1)+1 now: if .LE. PWORK, set up final rows of P(s).
C
      DO 50 I = ISTART, PWORK
         INDEX(I) = 0
         PCOEFF(I,I,1) = ONE
   50 CONTINUE
C
C     Triangularize the superdiagonal blocks of Amin.
C
      NROW = IWORK(INDBLK)
      IOFF = NR - NROW
      KMAX = INDBLK - 1
      ITAU = 1
      IFIRST = 0
      IF ( INDBLK.GT.2 ) IFIRST = IOFF - IWORK(KMAX)
C
C     QR decomposition of each superdiagonal block of A in turn
C     (done in reverse order to preserve upper triangular blocks in A).
C
      DO 60 K = 1, KMAX
C
C        Calculate dimensions of new block & its position in A.
C
         KWORK = INDBLK - K
         NCOL = NROW
         NROW = IWORK(KWORK)
         JOFF = IOFF
         IOFF = IOFF - NROW
         NREFLC = MIN( NROW, NCOL )
         JWORK  = ITAU + NREFLC
         IF ( KWORK.GE.2 ) IFIRST = IFIRST - IWORK(KWORK-1)
C
C        Find QR decomposition of this (full rank) block:
C        block = QR.  No pivoting is needed.
C
C        Workspace: need   MIN(NROW,NCOL) + NCOL;
C                   prefer MIN(NROW,NCOL) + NCOL*NB.
C
         CALL DGEQRF( NROW, NCOL, A(IOFF+1,JOFF+1), LDA, DWORK(ITAU),
     $                DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C        Premultiply appropriate row block of A by Q'.
C
C        Workspace: need   MIN(NROW,NCOL) + JOFF;
C                   prefer MIN(NROW,NCOL) + JOFF*NB.
C
         CALL DORMQR( 'Left', 'Transpose', NROW, JOFF, NREFLC,
     $                A(IOFF+1,JOFF+1), LDA, DWORK(ITAU), A(IOFF+1,1),
     $                LDA, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C        Premultiply appropriate row block of B by Q' also.
C
C        Workspace: need   MIN(NROW,NCOL) + MWORK;
C                   prefer MIN(NROW,NCOL) + MWORK*NB.
C
         CALL DORMQR( 'Left', 'Transpose', NROW, MWORK, NREFLC,
     $                A(IOFF+1,JOFF+1), LDA, DWORK(ITAU), B(IOFF+1,1),
     $                LDB, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C        And postmultiply the non-zero part of appropriate column
C        block of A by Q.
C
C        Workspace: need   MIN(NROW,NCOL) + NR;
C                   prefer MIN(NROW,NCOL) + NR*NB.
C
         CALL DORMQR( 'Right', 'No Transpose', NR-IFIRST, NROW, NREFLC,
     $                A(IOFF+1,JOFF+1), LDA, DWORK(ITAU),
     $                A(IFIRST+1,IOFF+1), LDA, DWORK(JWORK),
     $                LDWORK-JWORK+1, INFO )
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C        Annihilate the lower triangular part of the block in A.
C
         IF ( K.NE.KMAX .AND. NROW.GT.1 )
     $      CALL DLASET( 'Lower', NROW-1, NCOL, ZERO, ZERO,
     $                   A(IOFF+2,JOFF+1), LDA )
C
   60 CONTINUE
C
C     Finally: postmultiply non-zero columns of C by Q (K = KMAX).
C
C     Workspace: need   MIN(NROW,NCOL) + PWORK;
C                prefer MIN(NROW,NCOL) + PWORK*NB.
C
      CALL DORMQR( 'Right', 'No Transpose', PWORK, NROW, NREFLC,
     $             A(IOFF+1,JOFF+1), LDA, DWORK(ITAU), C, LDC,
     $             DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C     Annihilate the lower triangular part of the block in A.
C
      IF ( NROW.GT.1 )
     $   CALL DLASET( 'Lower', NROW-1, NCOL, ZERO, ZERO,
     $                A(IOFF+2,JOFF+1), LDA )
C
C     Calculate the (PWORK x NR) polynomial matrix V(s) ...
C
      CALL TB03AY( NR, A, LDA, INDBLK, IWORK, VCOEFF, LDVCO1, LDVCO2,
     $             PCOEFF, LDPCO1, LDPCO2, INFO)
C
      IF ( INFO.NE.0 ) THEN
         INFO = 1
         RETURN
      ELSE
C
C        And then use this matrix to calculate P(s): first store
C        C1 from C.
C
         IC = 1
         IRANKC = IWORK(1)
         LDWRIC = MAX( 1, PWORK )
         CALL DLACPY( 'Full', PWORK, IRANKC, C, LDC, DWORK(IC), LDWRIC )
C
         IF ( IRANKC.LT.PWORK ) THEN
C
C           rank(C) .LT. PWORK: obtain QR decomposition of C1,
C           giving R and Q.
C
C           Workspace: need   PWORK*IRANKC + 2*IRANKC;
C                      prefer PWORK*IRANKC +   IRANKC + IRANKC*NB.
C
            ITAU  = IC + LDWRIC*IRANKC
            JWORK = ITAU + IRANKC
C
            CALL DGEQRF( PWORK, IRANKC, DWORK(IC), LDWRIC, DWORK(ITAU),
     $                   DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C           First IRANKC rows of Pbar(s) are given by Wbar(s) * inv(R).
C           Check for zero diagonal elements of R.
C
            DO 70 I = 1, IRANKC
               IF ( DWORK(IC+(I-1)*LDWRIC+I-1).EQ.ZERO ) THEN
C
C                 Error return.
C
                  INFO = 2
                  RETURN
               END IF
   70       CONTINUE
C
            NROW = IRANKC
C
            DO 80 K = 1, INPLUS
               CALL DTRSM( 'Right', 'Upper', 'No Transpose', 'Non-unit',
     $                     NROW, IRANKC, ONE, DWORK(IC), LDWRIC,
     $                     PCOEFF(1,1,K), LDPCO1 )
               NROW = IWORK(K)
   80       CONTINUE
C
C           P(s) itself is now given by Pbar(s) * Q'.
C
            NROW = PWORK
C
            DO 90 K = 1, INPLUS
C
C              Workspace: need   PWORK*IRANKC + IRANKC + NROW;
C                         prefer PWORK*IRANKC + IRANKC + NROW*NB.
C
               CALL DORMQR( 'Right', 'Transpose', NROW, PWORK, IRANKC,
     $                      DWORK(IC), LDWRIC, DWORK(ITAU),
     $                      PCOEFF(1,1,K), LDPCO1, DWORK(JWORK),
     $                      LDWORK-JWORK+1, INFO )
               WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
               NROW = IWORK(K)
   90       CONTINUE
C
         ELSE
C
C           Special case rank(C) = PWORK, full:
C           no QR decomposition (P(s)=Wbar(s)*inv(C1)).
C
            CALL DGETRF( PWORK, PWORK, DWORK(IC), LDWRIC, IWORK(N+1),
     $                   INFO )
C
            IF ( INFO.NE.0 ) THEN
C
C              Error return.
C
               INFO = 2
               RETURN
            ELSE
C
               NROW = IRANKC
C
C              Workspace: need   PWORK*IRANKC + N.
C
               DO 100 K = 1, INPLUS
                  CALL DTRSM( 'Right', 'Upper', 'No Transpose',
     $                        'Non-unit', NROW, PWORK, ONE, DWORK(IC),
     $                        LDWRIC, PCOEFF(1,1,K), LDPCO1 )
                  CALL DTRSM( 'Right', 'Lower', 'No Transpose', 'Unit',
     $                        NROW, PWORK, ONE, DWORK(IC), LDWRIC,
     $                        PCOEFF(1,1,K), LDPCO1 )
                  CALL MA02GD( NROW, PCOEFF(1,1,K), LDPCO1, 1, PWORK,
     $                         IWORK(N+1), -1 )
                  NROW = IWORK(K)
  100          CONTINUE
            END IF
         END IF
C
C        Finally, Q(s) = V(s) * B + P(s) * D can now be evaluated.
C
         NROW = PWORK
C
         DO 110 K = 1, INPLUS
            CALL DGEMM( 'No transpose', 'No transpose', NROW, MWORK,
     $                  NR, ONE, VCOEFF(1,1,K), LDVCO1, B, LDB, ZERO,
     $                  QCOEFF(1,1,K), LDQCO1 )
            CALL DGEMM( 'No transpose', 'No transpose', NROW, MWORK,
     $                  PWORK, ONE, PCOEFF(1,1,K), LDPCO1, D, LDD, ONE,
     $                  QCOEFF(1,1,K), LDQCO1 )
            NROW = IWORK(K)
  110    CONTINUE
C
      END IF
C
      IF ( LLERIR ) THEN
C
C        For right matrix fraction, return to original (dual of dual)
C        system.
C
         CALL AB07MD( 'Z', NR, MWORK, PWORK, A, LDA, B, LDB, C, LDC,
     $                DWORK, 1, INFO )
C
C        Also, obtain the dual of the polynomial matrix representation.
C
         KPCOEF = 0
C
         DO 120 I = 1, PWORK
            KPCOEF = MAX( KPCOEF, INDEX(I) )
  120    CONTINUE
C
         KPCOEF = KPCOEF + 1
         CALL TC01OD( 'L', MWORK, PWORK, KPCOEF, PCOEFF, LDPCO1,
     $                LDPCO2, QCOEFF, LDQCO1, LDQCO2, INFO )
      ELSE
C
C        Reorder the rows and columns of the system, to get an upper
C        block Hessenberg matrix A of the minimal system.
C
         CALL TB01YD( NR, M, P, A, LDA, B, LDB, C, LDC, INFO )
      END IF
C
C     Set optimal workspace dimension.
C
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of TB03AD ***
      END