File: TB04BV.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (343 lines) | stat: -rw-r--r-- 11,417 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
      SUBROUTINE TB04BV( ORDER, P, M, MD, IGN, LDIGN, IGD, LDIGD, GN,
     $                   GD, D, LDD, TOL, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To separate the strictly proper part G0 from the constant part D
C     of an P-by-M proper transfer function matrix G.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     ORDER   CHARACTER*1
C             Specifies the order in which the polynomial coefficients
C             of the transfer function matrix are stored, as follows:
C             = 'I':  Increasing order of powers of the indeterminate;
C             = 'D':  Decreasing order of powers of the indeterminate.
C
C     Input/Output Parameters
C
C     P       (input) INTEGER
C             The number of the system outputs.  P >= 0.
C
C     M       (input) INTEGER
C             The number of the system inputs.  M >= 0.
C
C     MD      (input) INTEGER
C             The maximum degree of the polynomials in G, plus 1, i.e.,
C             MD = MAX(IGD(I,J)) + 1.
C                  I,J
C
C     IGN     (input/output) INTEGER array, dimension (LDIGN,M)
C             On entry, the leading P-by-M part of this array must
C             contain the degrees of the numerator polynomials in G:
C             the (i,j) element of IGN must contain the degree of the
C             numerator polynomial of the polynomial ratio G(i,j).
C             On exit, the leading P-by-M part of this array contains
C             the degrees of the numerator polynomials in G0.
C
C     LDIGN   INTEGER
C             The leading dimension of array IGN.  LDIGN >= max(1,P).
C
C     IGD     (input) INTEGER array, dimension (LDIGD,M)
C             The leading P-by-M part of this array must contain the
C             degrees of the denominator polynomials in G (and G0):
C             the (i,j) element of IGD contains the degree of the
C             denominator polynomial of the polynomial ratio G(i,j).
C
C     LDIGD   INTEGER
C             The leading dimension of array IGD.  LDIGD >= max(1,P).
C
C     GN      (input/output) DOUBLE PRECISION array, dimension (P*M*MD)
C             On entry, this array must contain the coefficients of the
C             numerator polynomials, Num(i,j), of the transfer function
C             matrix G. The polynomials are stored in a column-wise
C             order, i.e., Num(1,1), Num(2,1), ..., Num(P,1), Num(1,2),
C             Num(2,2), ..., Num(P,2), ..., Num(1,M), Num(2,M), ...,
C             Num(P,M); MD memory locations are reserved for each
C             polynomial, hence, the (i,j) polynomial is stored starting
C             from the location ((j-1)*P+i-1)*MD+1. The coefficients
C             appear in increasing or decreasing order of the powers
C             of the indeterminate, according to ORDER.
C             On exit, this array contains the coefficients of the
C             numerator polynomials of the strictly proper part G0 of
C             the transfer function matrix G, stored similarly.
C
C     GD      (input) DOUBLE PRECISION array, dimension (P*M*MD)
C             This array must contain the coefficients of the
C             denominator polynomials, Den(i,j), of the transfer
C             function matrix G. The polynomials are stored as for the
C             numerator polynomials.
C
C     D       (output) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading P-by-M part of this array contains the
C             matrix D.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= max(1,P).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in determining the degrees of
C             the numerators Num0(i,j) of the strictly proper part of
C             the transfer function matrix G. If the user sets TOL > 0,
C             then the given value of TOL is used as an absolute
C             tolerance; the leading coefficients with absolute value
C             less than TOL are considered neglijible. If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance,
C             defined by TOLDEF = IGN(i,j)*EPS*NORM( Num(i,j) ) is used
C             instead, where EPS is the machine precision (see LAPACK
C             Library routine DLAMCH), and NORM denotes the infinity
C             norm (the maximum coefficient in absolute value).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the transfer function matrix is not proper;
C             = 2:  if a denominator polynomial is null.
C
C     METHOD
C
C     The (i,j) entry of the real matrix D is zero, if the degree of
C     Num(i,j), IGN(i,j), is less than the degree of Den(i,j), IGD(i,j),
C     and it is given by the ratio of the leading coefficients of
C     Num(i,j) and Den(i,j), if IGN(i,j) is equal to IGD(i,j),
C     for i = 1 : P, and for j = 1 : M.
C
C     FURTHER COMMENTS
C
C     For maximum efficiency of index calculations, GN and GD are
C     implemented as one-dimensional arrays.
C
C     CONTRIBUTORS
C
C     V. Sima, Research Institute for Informatics, Bucharest, May 2002.
C     Based on the BIMASC Library routine TMPRP by A. Varga.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Feb. 2004.
C
C     KEYWORDS
C
C     State-space representation, transfer function.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER          ORDER
      DOUBLE PRECISION   TOL
      INTEGER            INFO, LDD, LDIGD, LDIGN, M, MD, P
C     .. Array Arguments ..
      DOUBLE PRECISION   D(LDD,*), GD(*), GN(*)
      INTEGER            IGD(LDIGD,*), IGN(LDIGN,*)
C     .. Local Scalars ..
      LOGICAL            ASCEND
      INTEGER            I, II, J, K, KK, KM, ND, NN
      DOUBLE PRECISION   DIJ, EPS, TOLDEF
C     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH, IDAMAX, LSAME
C     .. External Subroutines ..
      EXTERNAL           DAXPY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar parameters.
C
      INFO   = 0
      ASCEND = LSAME( ORDER, 'I' )
      IF( .NOT.ASCEND .AND. .NOT.LSAME( ORDER, 'D' ) ) THEN
         INFO = -1
      ELSE IF( P.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( MD.LT.1 ) THEN
         INFO = -4
      ELSE IF( LDIGN.LT.MAX( 1, P ) ) THEN
         INFO = -6
      ELSE IF( LDIGD.LT.MAX( 1, P ) ) THEN
         INFO = -8
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -12
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TB04BV', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( P, M ).EQ.0 )
     $   RETURN
C
C     Prepare the computation of the default tolerance.
C
      TOLDEF = TOL
      IF( TOLDEF.LE.ZERO )
     $   EPS = DLAMCH( 'Epsilon' )
C
      K = 1
C
      IF ( ASCEND ) THEN
C
C        Polynomial coefficients are stored in increasing order.
C
         DO 40 J = 1, M
C
            DO 30 I = 1, P
               NN = IGN(I,J)
               ND = IGD(I,J)
               IF ( NN.GT.ND ) THEN
C
C                 Error return: the transfer function matrix is
C                               not proper.
C
                  INFO = 1
                  RETURN
               ELSE IF ( NN.LT.ND .OR. ( ND.EQ.0 .AND. GN(K).EQ.ZERO ) )
     $               THEN
                  D(I,J) = ZERO
               ELSE
C
C                 Here NN = ND.
C
                  KK = K + NN
C
                  IF ( GD(KK).EQ.ZERO ) THEN
C
C                    Error return: the denominator is null.
C
                     INFO = 2
                     RETURN
                  ENDIF
C
                  DIJ    = GN(KK) / GD(KK)
                  D(I,J) = DIJ
                  GN(KK) = ZERO
                  IF ( NN.GT.0 ) THEN
                     CALL DAXPY( NN, -DIJ, GD(K), 1, GN(K), 1 )
                     IF ( TOL.LE.ZERO )
     $                  TOLDEF = DBLE( NN )*EPS*
     $                           ABS( GN(IDAMAX( NN, GN(K), 1 ) ) )
                     KM = NN
                     DO 10 II = 1, KM
                        KK = KK - 1
                        NN = NN - 1
                        IF ( ABS( GN(KK) ).GT.TOLDEF )
     $                     GO TO 20
   10                CONTINUE
C
   20                CONTINUE
C
                     IGN(I,J) = NN
                  ENDIF
               ENDIF
               K = K + MD
   30       CONTINUE
C
   40    CONTINUE
C
      ELSE
C
C        Polynomial coefficients are stored in decreasing order.
C
         DO 90 J = 1, M
C
            DO 80 I = 1, P
               NN = IGN(I,J)
               ND = IGD(I,J)
               IF ( NN.GT.ND ) THEN
C
C                 Error return: the transfer function matrix is
C                               not proper.
C
                  INFO = 1
                  RETURN
               ELSE IF ( NN.LT.ND .OR. ( ND.EQ.0 .AND. GN(K).EQ.ZERO ) )
     $               THEN
                  D(I,J) = ZERO
               ELSE
C
C                 Here NN = ND.
C
                  KK = K
C
                  IF ( GD(KK).EQ.ZERO ) THEN
C
C                    Error return: the denominator is null.
C
                     INFO = 2
                     RETURN
                  ENDIF
C
                  DIJ    = GN(KK) / GD(KK)
                  D(I,J) = DIJ
                  GN(KK) = ZERO
                  IF ( NN.GT.0 ) THEN
                     CALL DAXPY( NN, -DIJ, GD(K+1), 1, GN(K+1), 1 )
                     IF ( TOL.LE.ZERO )
     $                  TOLDEF = DBLE( NN )*EPS*
     $                           ABS( GN(IDAMAX( NN, GN(K+1), 1 ) ) )
                     KM = NN
                     DO 50 II = 1, KM
                        KK = KK + 1
                        NN = NN - 1
                        IF ( ABS( GN(KK) ).GT.TOLDEF )
     $                     GO TO 60
   50                CONTINUE
C
   60                CONTINUE
C
                     IGN(I,J) = NN
                     DO 70 II = 0, NN
                        GN(K+II) = GN(KK+II)
   70                CONTINUE
C
                  ENDIF
               ENDIF
               K = K + MD
   80       CONTINUE
C
   90    CONTINUE
C
      ENDIF
C
      RETURN
C *** Last line of TB04BV ***
      END