1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
SUBROUTINE TB04BW( ORDER, P, M, MD, IGN, LDIGN, IGD, LDIGD, GN,
$ GD, D, LDD, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the sum of an P-by-M rational matrix G and a real
C P-by-M matrix D.
C
C ARGUMENTS
C
C Mode Parameters
C
C ORDER CHARACTER*1
C Specifies the order in which the polynomial coefficients
C of the rational matrix are stored, as follows:
C = 'I': Increasing order of powers of the indeterminate;
C = 'D': Decreasing order of powers of the indeterminate.
C
C Input/Output Parameters
C
C P (input) INTEGER
C The number of the system outputs. P >= 0.
C
C M (input) INTEGER
C The number of the system inputs. M >= 0.
C
C MD (input) INTEGER
C The maximum degree of the polynomials in G, plus 1, i.e.,
C MD = MAX(IGN(I,J),IGD(I,J)) + 1.
C I,J
C
C IGN (input/output) INTEGER array, dimension (LDIGN,M)
C On entry, the leading P-by-M part of this array must
C contain the degrees of the numerator polynomials in G:
C the (i,j) element of IGN must contain the degree of the
C numerator polynomial of the polynomial ratio G(i,j).
C On exit, the leading P-by-M part of this array contains
C the degrees of the numerator polynomials in G + D.
C
C LDIGN INTEGER
C The leading dimension of array IGN. LDIGN >= max(1,P).
C
C IGD (input) INTEGER array, dimension (LDIGD,M)
C The leading P-by-M part of this array must contain the
C degrees of the denominator polynomials in G (and G + D):
C the (i,j) element of IGD contains the degree of the
C denominator polynomial of the polynomial ratio G(i,j).
C
C LDIGD INTEGER
C The leading dimension of array IGD. LDIGD >= max(1,P).
C
C GN (input/output) DOUBLE PRECISION array, dimension (P*M*MD)
C On entry, this array must contain the coefficients of the
C numerator polynomials, Num(i,j), of the rational matrix G.
C The polynomials are stored in a column-wise order, i.e.,
C Num(1,1), Num(2,1), ..., Num(P,1), Num(1,2), Num(2,2),
C ..., Num(P,2), ..., Num(1,M), Num(2,M), ..., Num(P,M);
C MD memory locations are reserved for each polynomial,
C hence, the (i,j) polynomial is stored starting from the
C location ((j-1)*P+i-1)*MD+1. The coefficients appear in
C increasing or decreasing order of the powers of the
C indeterminate, according to ORDER.
C On exit, this array contains the coefficients of the
C numerator polynomials of the rational matrix G + D,
C stored similarly.
C
C GD (input) DOUBLE PRECISION array, dimension (P*M*MD)
C This array must contain the coefficients of the
C denominator polynomials, Den(i,j), of the rational
C matrix G. The polynomials are stored as for the
C numerator polynomials.
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array must contain the
C matrix D.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= max(1,P).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The (i,j) entry of the real matrix D is added to the (i,j) entry
C of the matrix G, g(i,j), which is a ratio of two polynomials,
C for i = 1 : P, and for j = 1 : M. If g(i,j) = 0, it is assumed
C that its denominator is 1.
C
C NUMERICAL ASPECTS
C
C The algorithm is numerically stable.
C
C FURTHER COMMENTS
C
C Often, the rational matrix G is found from a state-space
C representation (A,B,C), and D corresponds to the direct
C feedthrough matrix of the system. The sum G + D gives the
C transfer function matrix of the system (A,B,C,D).
C For maximum efficiency of index calculations, GN and GD are
C implemented as one-dimensional arrays.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 2002.
C Based on the BIMASC Library routine TMCADD by A. Varga.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Feb. 2004.
C
C KEYWORDS
C
C State-space representation, transfer function.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER ORDER
INTEGER INFO, LDD, LDIGD, LDIGN, M, MD, P
C .. Array Arguments ..
DOUBLE PRECISION D(LDD,*), GD(*), GN(*)
INTEGER IGD(LDIGD,*), IGN(LDIGN,*)
C .. Local Scalars ..
LOGICAL ASCEND
INTEGER I, II, J, K, KK, KM, ND, NN
DOUBLE PRECISION DIJ
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
C Test the input scalar parameters.
C
INFO = 0
ASCEND = LSAME( ORDER, 'I' )
IF( .NOT.ASCEND .AND. .NOT.LSAME( ORDER, 'D' ) ) THEN
INFO = -1
ELSE IF( P.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( MD.LT.1 ) THEN
INFO = -4
ELSE IF( LDIGN.LT.MAX( 1, P ) ) THEN
INFO = -6
ELSE IF( LDIGD.LT.MAX( 1, P ) ) THEN
INFO = -8
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -12
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TB04BW', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( P, M ).EQ.0 )
$ RETURN
C
K = 1
C
IF ( ASCEND ) THEN
C
C Polynomial coefficients are stored in increasing order.
C
DO 30 J = 1, M
C
DO 20 I = 1, P
DIJ = D(I,J)
IF ( DIJ.NE.ZERO ) THEN
NN = IGN(I,J)
ND = IGD(I,J)
IF ( NN.EQ.0 .AND. ND.EQ.0 ) THEN
IF ( GN(K).EQ.ZERO ) THEN
GN(K) = DIJ
ELSE
GN(K) = GN(K) + DIJ*GD(K)
ENDIF
ELSE
KM = MIN( NN, ND ) + 1
CALL DAXPY( KM, DIJ, GD(K), 1, GN(K), 1 )
IF ( NN.LT.ND ) THEN
C
DO 10 II = K + KM, K + ND
GN(II) = DIJ*GD(II)
10 CONTINUE
C
IGN(I,J) = ND
ENDIF
ENDIF
ENDIF
K = K + MD
20 CONTINUE
C
30 CONTINUE
C
ELSE
C
C Polynomial coefficients are stored in decreasing order.
C
DO 60 J = 1, M
C
DO 50 I = 1, P
DIJ = D(I,J)
IF ( DIJ.NE.ZERO ) THEN
NN = IGN(I,J)
ND = IGD(I,J)
IF ( NN.EQ.0 .AND. ND.EQ.0 ) THEN
IF ( GN(K).EQ.ZERO ) THEN
GN(K) = DIJ
ELSE
GN(K) = GN(K) + DIJ*GD(K)
ENDIF
ELSE
KM = MIN( NN, ND ) + 1
IF ( NN.LT.ND ) THEN
KK = K + ND - NN
C
DO 35 II = K + NN, K, -1
GN(II+ND-NN) = GN(II)
35 CONTINUE
C
DO 40 II = K, KK - 1
GN(II) = DIJ*GD(II)
40 CONTINUE
C
IGN(I,J) = ND
CALL DAXPY( KM, DIJ, GD(KK), 1, GN(KK), 1 )
ELSE
KK = K + NN - ND
CALL DAXPY( KM, DIJ, GD(K), 1, GN(KK), 1 )
ENDIF
ENDIF
ENDIF
K = K + MD
50 CONTINUE
C
60 CONTINUE
C
ENDIF
C
RETURN
C *** Last line of TB04BW ***
END
|