1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
SUBROUTINE TB05AD( BALEIG, INITA, N, M, P, FREQ, A, LDA, B, LDB,
$ C, LDC, RCOND, G, LDG, EVRE, EVIM, HINVB,
$ LDHINV, IWORK, DWORK, LDWORK, ZWORK, LZWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To find the complex frequency response matrix (transfer matrix)
C G(freq) of the state-space representation (A,B,C) given by
C -1
C G(freq) = C * ((freq*I - A) ) * B
C
C where A, B and C are real N-by-N, N-by-M and P-by-N matrices
C respectively and freq is a complex scalar.
C
C ARGUMENTS
C
C Mode Parameters
C
C BALEIG CHARACTER*1
C Determines whether the user wishes to balance matrix A
C and/or compute its eigenvalues and/or estimate the
C condition number of the problem as follows:
C = 'N': The matrix A should not be balanced and neither
C the eigenvalues of A nor the condition number
C estimate of the problem are to be calculated;
C = 'C': The matrix A should not be balanced and only an
C estimate of the condition number of the problem
C is to be calculated;
C = 'B' or 'E' and INITA = 'G': The matrix A is to be
C balanced and its eigenvalues calculated;
C = 'A' and INITA = 'G': The matrix A is to be balanced,
C and its eigenvalues and an estimate of the
C condition number of the problem are to be
C calculated.
C
C INITA CHARACTER*1
C Specifies whether or not the matrix A is already in upper
C Hessenberg form as follows:
C = 'G': The matrix A is a general matrix;
C = 'H': The matrix A is in upper Hessenberg form and
C neither balancing nor the eigenvalues of A are
C required.
C INITA must be set to 'G' for the first call to the
C routine, unless the matrix A is already in upper
C Hessenberg form and neither balancing nor the eigenvalues
C of A are required. Thereafter, it must be set to 'H' for
C all subsequent calls.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of states, i.e. the order of the state
C transition matrix A. N >= 0.
C
C M (input) INTEGER
C The number of inputs, i.e. the number of columns in the
C matrix B. M >= 0.
C
C P (input) INTEGER
C The number of outputs, i.e. the number of rows in the
C matrix C. P >= 0.
C
C FREQ (input) COMPLEX*16
C The frequency freq at which the frequency response matrix
C (transfer matrix) is to be evaluated.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state transition matrix A.
C If INITA = 'G', then, on exit, the leading N-by-N part of
C this array contains an upper Hessenberg matrix similar to
C (via an orthogonal matrix consisting of a sequence of
C Householder transformations) the original state transition
C matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input/state matrix B.
C If INITA = 'G', then, on exit, the leading N-by-M part of
C this array contains the product of the transpose of the
C orthogonal transformation matrix used to reduce A to upper
C Hessenberg form and the original input/state matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix C.
C If INITA = 'G', then, on exit, the leading P-by-N part of
C this array contains the product of the original output/
C state matrix C and the orthogonal transformation matrix
C used to reduce A to upper Hessenberg form.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C RCOND (output) DOUBLE PRECISION
C If BALEIG = 'C' or BALEIG = 'A', then RCOND contains an
C estimate of the reciprocal of the condition number of
C matrix H with respect to inversion (see METHOD).
C
C G (output) COMPLEX*16 array, dimension (LDG,M)
C The leading P-by-M part of this array contains the
C frequency response matrix G(freq).
C
C LDG INTEGER
C The leading dimension of array G. LDG >= MAX(1,P).
C
C EVRE, (output) DOUBLE PRECISION arrays, dimension (N)
C EVIM If INITA = 'G' and BALEIG = 'B' or 'E' or BALEIG = 'A',
C then these arrays contain the real and imaginary parts,
C respectively, of the eigenvalues of the matrix A.
C Otherwise, these arrays are not referenced.
C
C HINVB (output) COMPLEX*16 array, dimension (LDHINV,M)
C The leading N-by-M part of this array contains the
C -1
C product H B.
C
C LDHINV INTEGER
C The leading dimension of array HINVB. LDHINV >= MAX(1,N).
C
C Workspace
C
C IWORK INTEGER array, dimension (N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1, N - 1 + MAX(N,M,P)),
C if INITA = 'G' and BALEIG = 'N', or 'B', or 'E';
C LDWORK >= MAX(1, N + MAX(N,M-1,P-1)),
C if INITA = 'G' and BALEIG = 'C', or 'A';
C LDWORK >= MAX(1, 2*N),
C if INITA = 'H' and BALEIG = 'C', or 'A';
C LDWORK >= 1, otherwise.
C For optimum performance when INITA = 'G' LDWORK should be
C larger.
C
C ZWORK COMPLEX*16 array, dimension (LZWORK)
C
C LZWORK INTEGER
C The length of the array ZWORK.
C LZWORK >= MAX(1,N*N+2*N), if BALEIG = 'C', or 'A';
C LZWORK >= MAX(1,N*N), otherwise.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if more than 30*N iterations are required to
C isolate all the eigenvalues of the matrix A; the
C computations are continued;
C = 2: if either FREQ is too near to an eigenvalue of the
C matrix A, or RCOND is less than EPS, where EPS is
C the machine precision (see LAPACK Library routine
C DLAMCH).
C
C METHOD
C
C The matrix A is first balanced (if BALEIG = 'B' or 'E', or
C BALEIG = 'A') and then reduced to upper Hessenberg form; the same
C transformations are applied to the matrix B and the matrix C.
C The complex Hessenberg matrix H = (freq*I - A) is then used
C -1
C to solve for C * H * B.
C
C Depending on the input values of parameters BALEIG and INITA,
C the eigenvalues of matrix A and the condition number of
C matrix H with respect to inversion are also calculated.
C
C REFERENCES
C
C [1] Laub, A.J.
C Efficient Calculation of Frequency Response Matrices from
C State-Space Models.
C ACM TOMS, 12, pp. 26-33, 1986.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C Supersedes Release 2.0 routine TB01FD by A.J.Laub, University of
C Southern California, Los Angeles, CA 90089, United States of
C America, June 1982.
C
C REVISIONS
C
C V. Sima, February 22, 1998 (changed the name of TB01RD).
C V. Sima, February 12, 1999, August 7, 2003.
C A. Markovski, Technical University of Sofia, September 30, 2003.
C V. Sima, October 1, 2003.
C
C KEYWORDS
C
C Frequency response, Hessenberg form, matrix algebra, input output
C description, multivariable system, orthogonal transformation,
C similarity transformation, state-space representation, transfer
C matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
COMPLEX*16 CZERO
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ) )
C .. Scalar Arguments ..
CHARACTER BALEIG, INITA
INTEGER INFO, LDA, LDB, LDC, LDG, LDHINV, LDWORK,
$ LZWORK, M, N, P
DOUBLE PRECISION RCOND
COMPLEX*16 FREQ
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), EVIM(*),
$ EVRE(*)
COMPLEX*16 ZWORK(*), G(LDG,*), HINVB(LDHINV,*)
C .. Local Scalars ..
CHARACTER BALANC
LOGICAL LBALBA, LBALEA, LBALEB, LBALEC, LINITA
INTEGER I, IGH, IJ, ITAU, J, JJ, JP, JWORK, K, LOW,
$ WRKOPT
DOUBLE PRECISION HNORM, T
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DASUM, DLAMCH
EXTERNAL DASUM, DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DGEBAL, DGEHRD, DHSEQR, DORMHR, DSCAL, DSWAP,
$ MB02RZ, MB02SZ, MB02TZ, XERBLA, ZLASET
C .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
LBALEC = LSAME( BALEIG, 'C' )
LBALEB = LSAME( BALEIG, 'B' ) .OR. LSAME( BALEIG, 'E' )
LBALEA = LSAME( BALEIG, 'A' )
LBALBA = LBALEB.OR.LBALEA
LINITA = LSAME( INITA, 'G' )
C
C Test the input scalar arguments.
C
IF( .NOT.LBALEC .AND. .NOT.LBALBA .AND.
$ .NOT.LSAME( BALEIG, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.LINITA .AND. .NOT.LSAME( INITA, 'H' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( P.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -12
ELSE IF( LDG.LT.MAX( 1, P ) ) THEN
INFO = -15
ELSE IF( LDHINV.LT.MAX( 1, N ) ) THEN
INFO = -19
ELSE IF( ( LINITA .AND. .NOT.LBALEC .AND. .NOT.LBALEA .AND.
$ LDWORK.LT.N - 1 + MAX( N, M, P ) ) .OR.
$ ( LINITA .AND. ( LBALEC .OR. LBALEA ) .AND.
$ LDWORK.LT.N + MAX( N, M-1, P-1 ) ) .OR.
$ ( .NOT.LINITA .AND. ( LBALEC .OR. LBALEA ) .AND.
$ LDWORK.LT.2*N ) .OR. ( LDWORK.LT.1 ) ) THEN
INFO = -22
ELSE IF( ( ( LBALEC .OR. LBALEA ) .AND. LZWORK.LT.N*( N + 2 ) )
$ .OR. ( LZWORK.LT.MAX( 1, N*N ) ) ) THEN
INFO = -24
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return
C
CALL XERBLA( 'TB05AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
IF ( MIN( M, P ).GT.0 )
$ CALL ZLASET( 'Full', P, M, CZERO, CZERO, G, LDG )
RCOND = ONE
DWORK(1) = ONE
RETURN
END IF
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
WRKOPT = 1
C
IF ( LINITA ) THEN
BALANC = 'N'
IF ( LBALBA ) BALANC = 'B'
C
C Workspace: need N.
C
CALL DGEBAL( BALANC, N, A, LDA, LOW, IGH, DWORK, INFO )
IF ( LBALBA ) THEN
C
C Adjust B and C matrices based on information in the
C vector DWORK which describes the balancing of A and is
C defined in the subroutine DGEBAL.
C
DO 10 J = 1, N
JJ = J
IF ( JJ.LT.LOW .OR. JJ.GT.IGH ) THEN
IF ( JJ.LT.LOW ) JJ = LOW - JJ
JP = DWORK(JJ)
IF ( JP.NE.JJ ) THEN
C
C Permute rows of B.
C
IF ( M.GT.0 )
$ CALL DSWAP( M, B(JJ,1), LDB, B(JP,1), LDB )
C
C Permute columns of C.
C
IF ( P.GT.0 )
$ CALL DSWAP( P, C(1,JJ), 1, C(1,JP), 1 )
END IF
END IF
10 CONTINUE
C
IF ( IGH.NE.LOW ) THEN
C
DO 20 J = LOW, IGH
T = DWORK(J)
C
C Scale rows of permuted B.
C
IF ( M.GT.0 )
$ CALL DSCAL( M, ONE/T, B(J,1), LDB )
C
C Scale columns of permuted C.
C
IF ( P.GT.0 )
$ CALL DSCAL( P, T, C(1,J), 1 )
20 CONTINUE
C
END IF
END IF
C
C Reduce A to Hessenberg form by orthogonal similarities and
C accumulate the orthogonal transformations into B and C.
C Workspace: need 2*N - 1; prefer N - 1 + N*NB.
C
ITAU = 1
JWORK = ITAU + N - 1
CALL DGEHRD( N, LOW, IGH, A, LDA, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Workspace: need N - 1 + M; prefer N - 1 + M*NB.
C
CALL DORMHR( 'Left', 'Transpose', N, M, LOW, IGH, A, LDA,
$ DWORK(ITAU), B, LDB, DWORK(JWORK), LDWORK-JWORK+1,
$ INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Workspace: need N - 1 + P; prefer N - 1 + P*NB.
C
CALL DORMHR( 'Right', 'No transpose', P, N, LOW, IGH, A, LDA,
$ DWORK(ITAU), C, LDC, DWORK(JWORK), LDWORK-JWORK+1,
$ INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
IF ( LBALBA ) THEN
C
C Temporarily store Hessenberg form of A in array ZWORK.
C
IJ = 0
DO 40 J = 1, N
C
DO 30 I = 1, N
IJ = IJ + 1
ZWORK(IJ) = DCMPLX( A(I,J), ZERO )
30 CONTINUE
C
40 CONTINUE
C
C Compute the eigenvalues of A if that option is requested.
C Workspace: need N.
C
CALL DHSEQR( 'Eigenvalues', 'No Schur', N, LOW, IGH, A, LDA,
$ EVRE, EVIM, DWORK, 1, DWORK, LDWORK, INFO )
C
C Restore upper Hessenberg form of A.
C
IJ = 0
DO 60 J = 1, N
C
DO 50 I = 1, N
IJ = IJ + 1
A(I,J) = DBLE( ZWORK(IJ) )
50 CONTINUE
C
60 CONTINUE
C
IF ( INFO.GT.0 ) THEN
C
C DHSEQR could not evaluate the eigenvalues of A.
C
INFO = 1
END IF
END IF
END IF
C
C Update H := (FREQ * I) - A with appropriate value of FREQ.
C
IJ = 0
JJ = 1
DO 80 J = 1, N
C
DO 70 I = 1, N
IJ = IJ + 1
ZWORK(IJ) = -DCMPLX( A(I,J), ZERO )
70 CONTINUE
C
ZWORK(JJ) = FREQ + ZWORK(JJ)
JJ = JJ + N + 1
80 CONTINUE
C
IF ( LBALEC .OR. LBALEA ) THEN
C
C Efficiently compute the 1-norm of the matrix for condition
C estimation.
C
HNORM = ZERO
JJ = 1
C
DO 90 J = 1, N
T = ABS( ZWORK(JJ) ) + DASUM( J-1, A(1,J), 1 )
IF ( J.LT.N ) T = T + ABS( A(J+1,J) )
HNORM = MAX( HNORM, T )
JJ = JJ + N + 1
90 CONTINUE
C
END IF
C
C Factor the complex Hessenberg matrix.
C
CALL MB02SZ( N, ZWORK, N, IWORK, INFO )
IF ( INFO.NE.0 ) INFO = 2
C
IF ( LBALEC .OR. LBALEA ) THEN
C
C Estimate the condition of the matrix.
C
C Workspace: need 2*N.
C
CALL MB02TZ( '1-norm', N, HNORM, ZWORK, N, IWORK, RCOND, DWORK,
$ ZWORK(N*N+1), INFO )
WRKOPT = MAX( WRKOPT, 2*N )
IF ( RCOND.LT.DLAMCH( 'Epsilon' ) ) INFO = 2
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return: Linear system is numerically or exactly singular.
C
RETURN
END IF
C
C Compute (H-INVERSE)*B.
C
DO 110 J = 1, M
C
DO 100 I = 1, N
HINVB(I,J) = DCMPLX( B(I,J), ZERO )
100 CONTINUE
C
110 CONTINUE
C
CALL MB02RZ( 'No transpose', N, M, ZWORK, N, IWORK, HINVB, LDHINV,
$ INFO )
C
C Compute C*(H-INVERSE)*B.
C
DO 150 J = 1, M
C
DO 120 I = 1, P
G(I,J) = CZERO
120 CONTINUE
C
DO 140 K = 1, N
C
DO 130 I = 1, P
G(I,J) = G(I,J) + DCMPLX( C(I,K), ZERO )*HINVB(K,J)
130 CONTINUE
C
140 CONTINUE
C
150 CONTINUE
C
C G now contains the desired frequency response matrix.
C Set the optimal workspace.
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of TB05AD ***
END
|