1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
SUBROUTINE TC04AD( LERI, M, P, INDEX, PCOEFF, LDPCO1, LDPCO2,
$ QCOEFF, LDQCO1, LDQCO2, N, RCOND, A, LDA, B,
$ LDB, C, LDC, D, LDD, IWORK, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To find a state-space representation (A,B,C,D) with the same
C transfer matrix T(s) as that of a given left or right polynomial
C matrix representation, i.e.
C
C C*inv(sI-A)*B + D = T(s) = inv(P(s))*Q(s) = Q(s)*inv(P(s)).
C
C ARGUMENTS
C
C Mode Parameters
C
C LERI CHARACTER*1
C Indicates whether a left polynomial matrix representation
C or a right polynomial matrix representation is input as
C follows:
C = 'L': A left matrix fraction is input;
C = 'R': A right matrix fraction is input.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C INDEX (input) INTEGER array, dimension (MAX(M,P))
C If LERI = 'L', INDEX(I), I = 1,2,...,P, must contain the
C maximum degree of the polynomials in the I-th row of the
C denominator matrix P(s) of the given left polynomial
C matrix representation.
C If LERI = 'R', INDEX(I), I = 1,2,...,M, must contain the
C maximum degree of the polynomials in the I-th column of
C the denominator matrix P(s) of the given right polynomial
C matrix representation.
C
C PCOEFF (input) DOUBLE PRECISION array, dimension
C (LDPCO1,LDPCO2,kpcoef), where kpcoef = MAX(INDEX(I)) + 1.
C If LERI = 'L' then porm = P, otherwise porm = M.
C The leading porm-by-porm-by-kpcoef part of this array must
C contain the coefficients of the denominator matrix P(s).
C PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
C of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if
C LERI = 'L' then iorj = I, otherwise iorj = J.
C Thus for LERI = 'L', P(s) =
C diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...).
C If LERI = 'R', PCOEFF is modified by the routine but
C restored on exit.
C
C LDPCO1 INTEGER
C The leading dimension of array PCOEFF.
C LDPCO1 >= MAX(1,P) if LERI = 'L',
C LDPCO1 >= MAX(1,M) if LERI = 'R'.
C
C LDPCO2 INTEGER
C The second dimension of array PCOEFF.
C LDPCO2 >= MAX(1,P) if LERI = 'L',
C LDPCO2 >= MAX(1,M) if LERI = 'R'.
C
C QCOEFF (input) DOUBLE PRECISION array, dimension
C (LDQCO1,LDQCO2,kpcoef)
C If LERI = 'L' then porp = M, otherwise porp = P.
C The leading porm-by-porp-by-kpcoef part of this array must
C contain the coefficients of the numerator matrix Q(s).
C QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
C If LERI = 'R', QCOEFF is modified by the routine but
C restored on exit.
C
C LDQCO1 INTEGER
C The leading dimension of array QCOEFF.
C LDQCO1 >= MAX(1,P) if LERI = 'L',
C LDQCO1 >= MAX(1,M,P) if LERI = 'R'.
C
C LDQCO2 INTEGER
C The second dimension of array QCOEFF.
C LDQCO2 >= MAX(1,M) if LERI = 'L',
C LDQCO2 >= MAX(1,M,P) if LERI = 'R'.
C
C N (output) INTEGER
C The order of the resulting state-space representation.
C porm
C That is, N = SUM INDEX(I).
C I=1
C
C RCOND (output) DOUBLE PRECISION
C The estimated reciprocal of the condition number of the
C leading row (if LERI = 'L') or the leading column (if
C LERI = 'R') coefficient matrix of P(s).
C If RCOND is nearly zero, P(s) is nearly row or column
C non-proper.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array contains the state
C dynamics matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (output) DOUBLE PRECISION array, dimension (LDB,MAX(M,P))
C The leading N-by-M part of this array contains the
C input/state matrix B; the remainder of the leading
C N-by-MAX(M,P) part is used as internal workspace.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array contains the
C state/output matrix C; the remainder of the leading
C MAX(M,P)-by-N part is used as internal workspace.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,M,P).
C
C D (output) DOUBLE PRECISION array, dimension (LDD,MAX(M,P))
C The leading P-by-M part of this array contains the direct
C transmission matrix D; the remainder of the leading
C MAX(M,P)-by-MAX(M,P) part is used as internal workspace.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,M,P).
C
C Workspace
C
C IWORK INTEGER array, dimension (2*MAX(M,P))
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,MAX(M,P)*(MAX(M,P)+4)).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if P(s) is not row (if LERI = 'L') or column
C (if LERI = 'R') proper. Consequently, no state-space
C representation is calculated.
C
C METHOD
C
C The method for a left matrix fraction will be described here;
C right matrix fractions are dealt with by obtaining the dual left
C polynomial matrix representation and constructing an equivalent
C state-space representation for this. The first step is to check
C if the denominator matrix P(s) is row proper; if it is not then
C the routine returns with the Error Indicator (INFO) set to 1.
C Otherwise, Wolovich's Observable Structure Theorem is used to
C construct a state-space representation (A,B,C,D) in observable
C companion form. The sizes of the blocks of matrix A and matrix C
C here are precisely the row degrees of P(s), while their
C 'non-trivial' columns are given easily from its coefficients.
C Similarly, the matrix D is obtained from the leading coefficients
C of P(s) and of the numerator matrix Q(s), while matrix B is given
C by the relation Sbar(s)B = Q(s) - P(s)D, where Sbar(s) is a
C polynomial matrix whose (j,k)(th) element is given by
C
C j-u(k-1)-1
C ( s , j = u(k-1)+1,u(k-1)+2,....,u(k)
C Sbar = (
C j,k ( 0 , otherwise
C
C k
C u(k) = SUM d , k = 1,2,...,M and d ,d ,...,d are the
C i=1 i 1 2 M
C controllability indices. For convenience in solving this, C' and B
C are initially set up to contain the coefficients of P(s) and Q(s),
C respectively, stored by rows.
C
C REFERENCES
C
C [1] Wolovich, W.A.
C Linear Multivariate Systems, (Theorem 4.3.3).
C Springer-Verlag, 1974.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C Supersedes Release 2.0 routine TC01BD by T.W.C.Williams, Kingston
C Polytechnic, United Kingdom, March 1982.
C
C REVISIONS
C
C February 22, 1998 (changed the name of TC01ND).
C May 12, 1998.
C
C KEYWORDS
C
C Coprime matrix fraction, elementary polynomial operations,
C polynomial matrix, state-space representation, transfer matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER LERI
INTEGER INFO, LDA, LDB, LDC, LDD, LDPCO1, LDPCO2,
$ LDQCO1, LDQCO2, LDWORK, M, N, P
DOUBLE PRECISION RCOND
C .. Array Arguments ..
INTEGER INDEX(*), IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), PCOEFF(LDPCO1,LDPCO2,*),
$ QCOEFF(LDQCO1,LDQCO2,*)
C .. Local Scalars ..
LOGICAL LLERI
INTEGER I, IA, IBIAS, J, JA, JC, JW, JWORK, LDW, K,
$ KPCOEF, KSTOP, MAXIND, MINDEX, MWORK, PWORK,
$ WRKOPT
DOUBLE PRECISION DWNORM
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL LSAME, DLAMCH, DLANGE
C .. External Subroutines ..
EXTERNAL AB07MD, DCOPY, DGECON, DGEMM, DGETRF, DGETRI,
$ DGETRS, DLACPY, DLASET, TC01OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C .. Executable Statements ..
C
INFO = 0
LLERI = LSAME( LERI, 'L' )
MINDEX = MAX( M, P )
C
C Test the input scalar arguments.
C
IF( .NOT.LLERI .AND. .NOT.LSAME( LERI, 'R' ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( ( LLERI .AND. LDPCO1.LT.MAX( 1, P ) ) .OR.
$ ( .NOT.LLERI .AND. LDPCO1.LT.MAX( 1, M ) ) ) THEN
INFO = -6
ELSE IF( ( LLERI .AND. LDPCO2.LT.MAX( 1, P ) ) .OR.
$ ( .NOT.LLERI .AND. LDPCO2.LT.MAX( 1, M ) ) ) THEN
INFO = -7
ELSE IF( ( LLERI .AND. LDQCO1.LT.MAX( 1, P ) ) .OR.
$ ( .NOT.LLERI .AND. LDQCO1.LT.MAX( 1, MINDEX ) ) ) THEN
INFO = -9
ELSE IF( ( LLERI .AND. LDQCO2.LT.MAX( 1, M ) ) .OR.
$ ( .NOT.LLERI .AND. LDQCO2.LT.MAX( 1, MINDEX ) ) ) THEN
INFO = -10
END IF
C
N = 0
IF ( INFO.EQ.0 ) THEN
IF ( LLERI ) THEN
PWORK = P
MWORK = M
ELSE
PWORK = M
MWORK = P
END IF
C
MAXIND = 0
DO 10 I = 1, PWORK
N = N + INDEX(I)
IF ( INDEX(I).GT.MAXIND ) MAXIND = INDEX(I)
10 CONTINUE
KPCOEF = MAXIND + 1
END IF
C
IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDC.LT.MAX( 1, MINDEX ) ) THEN
INFO = -18
ELSE IF( LDD.LT.MAX( 1, MINDEX ) ) THEN
INFO = -20
ELSE IF( LDWORK.LT.MAX( 1, MINDEX*( MINDEX + 4 ) ) ) THEN
INFO = -23
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TC04AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( M.EQ.0 .OR. P.EQ.0 ) THEN
N = 0
RCOND = ONE
DWORK(1) = ONE
RETURN
END IF
C
IF ( .NOT.LLERI ) THEN
C
C Initialization for right matrix fraction: obtain the dual
C system.
C
CALL TC01OD( 'R', M, P, KPCOEF, PCOEFF, LDPCO1, LDPCO2,
$ QCOEFF, LDQCO1, LDQCO2, INFO )
END IF
C
C Store leading row coefficient matrix of P(s).
C
LDW = MAX( 1, PWORK )
CALL DLACPY( 'Full', PWORK, PWORK, PCOEFF, LDPCO1, DWORK, LDW )
C
C Check if P(s) is row proper: if not, exit.
C
DWNORM = DLANGE( '1-norm', PWORK, PWORK, DWORK, LDW, DWORK )
C
CALL DGETRF( PWORK, PWORK, DWORK, LDW, IWORK, INFO )
C
C Workspace: need PWORK*(PWORK + 4).
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
JWORK = LDW*PWORK + 1
C
CALL DGECON( '1-norm', PWORK, DWORK, LDW, DWNORM, RCOND,
$ DWORK(JWORK), IWORK(PWORK+1), INFO )
C
WRKOPT = MAX( 1, PWORK*(PWORK + 4) )
C
IF ( RCOND.LE.DLAMCH( 'Epsilon' ) ) THEN
C
C Error return: P(s) is not row proper.
C
INFO = 1
RETURN
ELSE
C
C Calculate the order of equivalent state-space representation,
C and initialize A.
C
CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
C
DWORK(JWORK) = ONE
IF ( N.GT.1 ) CALL DCOPY( N-1, DWORK(JWORK), 0, A(2,1), LDA+1 )
C
C Find the PWORK ordered 'non-trivial' columns row by row,
C in PWORK row blocks, the I-th having INDEX(I) rows.
C
IBIAS = 2
C
DO 50 I = 1, PWORK
KSTOP = INDEX(I) + 1
IF ( KSTOP.NE.1 ) THEN
IBIAS = IBIAS + INDEX(I)
C
C These rows given from the lower coefficients of row I
C of P(s).
C
DO 40 K = 2, KSTOP
IA = IBIAS - K
C
DO 20 J = 1, PWORK
DWORK(JWORK+J-1) = -PCOEFF(I,J,K)
20 CONTINUE
C
CALL DGETRS( 'Transpose', PWORK, 1, DWORK, LDW,
$ IWORK, DWORK(JWORK), LDW, INFO )
C
JA = 0
C
DO 30 J = 1, PWORK
IF ( INDEX(J).NE.0 ) THEN
JA = JA + INDEX(J)
A(IA,JA) = DWORK(JWORK+J-1)
END IF
30 CONTINUE
C
C Also, set up B and C (temporarily) for use when
C finding B.
C
CALL DCOPY( MWORK, QCOEFF(I,1,K), LDQCO1, B(IA,1),
$ LDB )
CALL DCOPY( PWORK, PCOEFF(I,1,K), LDPCO1, C(1,IA), 1 )
40 CONTINUE
C
END IF
50 CONTINUE
C
C Calculate D from the leading coefficients of P and Q.
C
CALL DLACPY( 'Full', PWORK, MWORK, QCOEFF, LDQCO1, D, LDD )
C
CALL DGETRS( 'No transpose', PWORK, MWORK, DWORK, LDW, IWORK,
$ D, LDD, INFO )
C
C For B and C as set up above, desired B = B - (C' * D).
C
CALL DGEMM( 'Transpose', 'No transpose', N, MWORK, PWORK, -ONE,
$ C, LDC, D, LDD, ONE, B, LDB )
C
C Finally, calculate C: zero, apart from ...
C
CALL DLASET( 'Full', PWORK, N, ZERO, ZERO, C, LDC )
C
C PWORK ordered 'non-trivial' columns, equal to those
C of inv(DWORK).
C
C Workspace: need PWORK*(PWORK + 1);
C prefer PWORK*PWORK + PWORK*NB.
C
CALL DGETRI( PWORK, DWORK, LDW, IWORK, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
JC = 0
JW = 1
C
DO 60 J = 1, PWORK
IF ( INDEX(J).NE.0 ) THEN
JC = JC + INDEX(J)
CALL DCOPY( PWORK, DWORK(JW), 1, C(1,JC), 1 )
END IF
JW = JW + LDW
60 CONTINUE
C
END IF
C
C For right matrix fraction, return to original (dual of dual)
C system.
C
IF ( .NOT.LLERI ) THEN
CALL TC01OD( 'L', MWORK, PWORK, KPCOEF, PCOEFF, LDPCO1,
$ LDPCO2, QCOEFF, LDQCO1, LDQCO2, INFO )
C
C Also, obtain dual of state-space representation.
C
CALL AB07MD( 'D', N, MWORK, PWORK, A, LDA, B, LDB, C, LDC, D,
$ LDD, INFO )
END IF
C
C Set optimal workspace dimension.
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of TC04AD ***
END
|