File: TC04AD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (483 lines) | stat: -rw-r--r-- 16,918 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
      SUBROUTINE TC04AD( LERI, M, P, INDEX, PCOEFF, LDPCO1, LDPCO2,
     $                   QCOEFF, LDQCO1, LDQCO2, N, RCOND, A, LDA, B,
     $                   LDB, C, LDC, D, LDD, IWORK, DWORK, LDWORK,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To find a state-space representation (A,B,C,D) with the same
C     transfer matrix T(s) as that of a given left or right polynomial
C     matrix representation, i.e.
C
C        C*inv(sI-A)*B + D = T(s) = inv(P(s))*Q(s) = Q(s)*inv(P(s)).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     LERI    CHARACTER*1
C             Indicates whether a left polynomial matrix representation
C             or a right polynomial matrix representation is input as
C             follows:
C             = 'L':  A left matrix fraction is input;
C             = 'R':  A right matrix fraction is input.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     INDEX   (input) INTEGER array, dimension (MAX(M,P))
C             If LERI = 'L', INDEX(I), I = 1,2,...,P, must contain the
C             maximum degree of the polynomials in the I-th row of the
C             denominator matrix P(s) of the given left polynomial
C             matrix representation.
C             If LERI = 'R', INDEX(I), I = 1,2,...,M, must contain the
C             maximum degree of the polynomials in the I-th column of
C             the denominator matrix P(s) of the given right polynomial
C             matrix representation.
C
C     PCOEFF  (input) DOUBLE PRECISION array, dimension
C             (LDPCO1,LDPCO2,kpcoef), where kpcoef = MAX(INDEX(I)) + 1.
C             If LERI = 'L' then porm = P, otherwise porm = M.
C             The leading porm-by-porm-by-kpcoef part of this array must
C             contain the coefficients of the denominator matrix P(s).
C             PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
C             of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if
C             LERI = 'L' then iorj = I, otherwise iorj = J.
C             Thus for LERI = 'L', P(s) =
C             diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...).
C             If LERI = 'R', PCOEFF is modified by the routine but
C             restored on exit.
C
C     LDPCO1  INTEGER
C             The leading dimension of array PCOEFF.
C             LDPCO1 >= MAX(1,P) if LERI = 'L',
C             LDPCO1 >= MAX(1,M) if LERI = 'R'.
C
C     LDPCO2  INTEGER
C             The second dimension of array PCOEFF.
C             LDPCO2 >= MAX(1,P) if LERI = 'L',
C             LDPCO2 >= MAX(1,M) if LERI = 'R'.
C
C     QCOEFF  (input) DOUBLE PRECISION array, dimension
C             (LDQCO1,LDQCO2,kpcoef)
C             If LERI = 'L' then porp = M, otherwise porp = P.
C             The leading porm-by-porp-by-kpcoef part of this array must
C             contain the coefficients of the numerator matrix Q(s).
C             QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
C             If LERI = 'R', QCOEFF is modified by the routine but
C             restored on exit.
C
C     LDQCO1  INTEGER
C             The leading dimension of array QCOEFF.
C             LDQCO1 >= MAX(1,P)   if LERI = 'L',
C             LDQCO1 >= MAX(1,M,P) if LERI = 'R'.
C
C     LDQCO2  INTEGER
C             The second dimension of array QCOEFF.
C             LDQCO2 >= MAX(1,M)   if LERI = 'L',
C             LDQCO2 >= MAX(1,M,P) if LERI = 'R'.
C
C     N       (output) INTEGER
C             The order of the resulting state-space representation.
C                          porm
C             That is, N = SUM INDEX(I).
C                          I=1
C
C     RCOND   (output) DOUBLE PRECISION
C             The estimated reciprocal of the condition number of the
C             leading row (if LERI = 'L') or the leading column (if
C             LERI = 'R') coefficient matrix of P(s).
C             If RCOND is nearly zero, P(s) is nearly row or column
C             non-proper.
C
C     A       (output) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array contains the state
C             dynamics matrix A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (output) DOUBLE PRECISION array, dimension (LDB,MAX(M,P))
C             The leading N-by-M part of this array contains the
C             input/state matrix B; the remainder of the leading
C             N-by-MAX(M,P) part is used as internal workspace.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (output) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading P-by-N part of this array contains the
C             state/output matrix C; the remainder of the leading
C             MAX(M,P)-by-N part is used as internal workspace.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,M,P).
C
C     D       (output) DOUBLE PRECISION array, dimension (LDD,MAX(M,P))
C             The leading P-by-M part of this array contains the direct
C             transmission matrix D; the remainder of the leading
C             MAX(M,P)-by-MAX(M,P) part is used as internal workspace.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,M,P).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (2*MAX(M,P))
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,MAX(M,P)*(MAX(M,P)+4)).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if P(s) is not row (if LERI = 'L') or column
C                   (if LERI = 'R') proper. Consequently, no state-space
C                   representation is calculated.
C
C     METHOD
C
C     The method for a left matrix fraction will be described here;
C     right matrix fractions are dealt with by obtaining the dual left
C     polynomial matrix representation and constructing an equivalent
C     state-space representation for this. The first step is to check
C     if the denominator matrix P(s) is row proper; if it is not then
C     the routine returns with the Error Indicator (INFO) set to 1.
C     Otherwise, Wolovich's Observable  Structure Theorem is used to
C     construct a state-space representation (A,B,C,D) in observable
C     companion form. The sizes of the blocks of matrix A and matrix C
C     here are precisely the row degrees of P(s), while their
C     'non-trivial' columns are given easily from its coefficients.
C     Similarly, the matrix D is obtained from the leading coefficients
C     of P(s) and of the numerator matrix Q(s), while matrix B is given
C     by the relation Sbar(s)B = Q(s) - P(s)D, where Sbar(s) is a
C     polynomial matrix whose (j,k)(th) element is given by
C
C                  j-u(k-1)-1
C               ( s           , j = u(k-1)+1,u(k-1)+2,....,u(k)
C     Sbar    = (
C        j,k    (           0 , otherwise
C
C             k
C     u(k) = SUM d , k = 1,2,...,M and d ,d ,...,d  are the
C            i=1  i                     1  2      M
C     controllability indices. For convenience in solving this, C' and B
C     are initially set up to contain the coefficients of P(s) and Q(s),
C     respectively, stored by rows.
C
C     REFERENCES
C
C     [1] Wolovich, W.A.
C         Linear Multivariate Systems, (Theorem 4.3.3).
C         Springer-Verlag, 1974.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C     Supersedes Release 2.0 routine TC01BD by T.W.C.Williams, Kingston
C     Polytechnic, United Kingdom, March 1982.
C
C     REVISIONS
C
C     February 22, 1998 (changed the name of TC01ND).
C     May 12, 1998.
C
C     KEYWORDS
C
C     Coprime matrix fraction, elementary polynomial operations,
C     polynomial matrix, state-space representation, transfer matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         LERI
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDPCO1, LDPCO2,
     $                  LDQCO1, LDQCO2, LDWORK, M, N, P
      DOUBLE PRECISION  RCOND
C     .. Array Arguments ..
      INTEGER           INDEX(*), IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), PCOEFF(LDPCO1,LDPCO2,*),
     $                  QCOEFF(LDQCO1,LDQCO2,*)
C     .. Local Scalars ..
      LOGICAL           LLERI
      INTEGER           I, IA, IBIAS, J, JA, JC, JW, JWORK, LDW, K,
     $                  KPCOEF, KSTOP, MAXIND, MINDEX, MWORK, PWORK,
     $                  WRKOPT
      DOUBLE PRECISION  DWNORM
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANGE
      EXTERNAL          LSAME, DLAMCH, DLANGE
C     .. External Subroutines ..
      EXTERNAL          AB07MD, DCOPY, DGECON, DGEMM, DGETRF, DGETRI,
     $                  DGETRS, DLACPY, DLASET, TC01OD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX
C     .. Executable Statements ..
C
      INFO = 0
      LLERI = LSAME( LERI, 'L' )
      MINDEX = MAX( M, P )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LLERI .AND. .NOT.LSAME( LERI, 'R' ) ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( ( LLERI .AND. LDPCO1.LT.MAX( 1, P ) ) .OR.
     $    ( .NOT.LLERI .AND. LDPCO1.LT.MAX( 1, M ) ) ) THEN
         INFO = -6
      ELSE IF( ( LLERI .AND. LDPCO2.LT.MAX( 1, P ) ) .OR.
     $    ( .NOT.LLERI .AND. LDPCO2.LT.MAX( 1, M ) ) ) THEN
         INFO = -7
      ELSE IF( ( LLERI .AND. LDQCO1.LT.MAX( 1, P ) ) .OR.
     $    ( .NOT.LLERI .AND. LDQCO1.LT.MAX( 1, MINDEX ) ) ) THEN
         INFO = -9
      ELSE IF( ( LLERI .AND. LDQCO2.LT.MAX( 1, M ) ) .OR.
     $    ( .NOT.LLERI .AND. LDQCO2.LT.MAX( 1, MINDEX ) ) ) THEN
         INFO = -10
      END IF
C
      N = 0
      IF ( INFO.EQ.0 ) THEN
         IF ( LLERI ) THEN
            PWORK = P
            MWORK = M
         ELSE
            PWORK = M
            MWORK = P
         END IF
C
         MAXIND = 0
         DO 10 I = 1, PWORK
            N = N + INDEX(I)
            IF ( INDEX(I).GT.MAXIND ) MAXIND = INDEX(I)
   10    CONTINUE
         KPCOEF = MAXIND + 1
      END IF
C
      IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -14
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -16
      ELSE IF( LDC.LT.MAX( 1, MINDEX ) ) THEN
         INFO = -18
      ELSE IF( LDD.LT.MAX( 1, MINDEX ) ) THEN
         INFO = -20
      ELSE IF( LDWORK.LT.MAX( 1, MINDEX*( MINDEX + 4 ) ) ) THEN
         INFO = -23
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TC04AD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( M.EQ.0 .OR. P.EQ.0 ) THEN
         N = 0
         RCOND = ONE
         DWORK(1) = ONE
         RETURN
      END IF
C
      IF ( .NOT.LLERI ) THEN
C
C        Initialization for right matrix fraction: obtain the dual
C        system.
C
         CALL TC01OD( 'R', M, P, KPCOEF, PCOEFF, LDPCO1, LDPCO2,
     $                QCOEFF, LDQCO1, LDQCO2, INFO )
      END IF
C
C     Store leading row coefficient matrix of P(s).
C
      LDW = MAX( 1, PWORK )
      CALL DLACPY( 'Full', PWORK, PWORK, PCOEFF, LDPCO1, DWORK, LDW )
C
C     Check if P(s) is row proper: if not, exit.
C
      DWNORM = DLANGE( '1-norm', PWORK, PWORK, DWORK, LDW, DWORK )
C
      CALL DGETRF( PWORK, PWORK, DWORK, LDW, IWORK, INFO )
C
C     Workspace: need  PWORK*(PWORK + 4).
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      JWORK = LDW*PWORK + 1
C
      CALL DGECON( '1-norm', PWORK, DWORK, LDW, DWNORM, RCOND,
     $             DWORK(JWORK), IWORK(PWORK+1), INFO )
C
      WRKOPT = MAX( 1, PWORK*(PWORK + 4) )
C
      IF ( RCOND.LE.DLAMCH( 'Epsilon' ) ) THEN
C
C        Error return: P(s) is not row proper.
C
         INFO = 1
         RETURN
      ELSE
C
C        Calculate the order of equivalent state-space representation,
C        and initialize A.
C
         CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
C
         DWORK(JWORK) = ONE
         IF ( N.GT.1 ) CALL DCOPY( N-1, DWORK(JWORK), 0, A(2,1), LDA+1 )
C
C        Find the PWORK ordered 'non-trivial' columns row by row,
C        in PWORK row blocks, the I-th having INDEX(I) rows.
C
         IBIAS = 2
C
         DO 50 I = 1, PWORK
            KSTOP = INDEX(I) + 1
            IF ( KSTOP.NE.1 ) THEN
               IBIAS = IBIAS + INDEX(I)
C
C              These rows given from the lower coefficients of row I
C              of P(s).
C
               DO 40 K = 2, KSTOP
                  IA = IBIAS - K
C
                  DO 20 J = 1, PWORK
                     DWORK(JWORK+J-1) = -PCOEFF(I,J,K)
   20             CONTINUE
C
                  CALL DGETRS( 'Transpose', PWORK, 1, DWORK, LDW,
     $                         IWORK, DWORK(JWORK), LDW, INFO )
C
                  JA = 0
C
                  DO 30 J = 1, PWORK
                     IF ( INDEX(J).NE.0 ) THEN
                        JA = JA + INDEX(J)
                        A(IA,JA) = DWORK(JWORK+J-1)
                     END IF
   30             CONTINUE
C
C                 Also, set up B and C (temporarily) for use when
C                 finding B.
C
                  CALL DCOPY( MWORK, QCOEFF(I,1,K), LDQCO1, B(IA,1),
     $                        LDB )
                  CALL DCOPY( PWORK, PCOEFF(I,1,K), LDPCO1, C(1,IA), 1 )
   40          CONTINUE
C
            END IF
   50    CONTINUE
C
C        Calculate D from the leading coefficients of P and Q.
C
         CALL DLACPY( 'Full', PWORK, MWORK, QCOEFF, LDQCO1, D, LDD )
C
         CALL DGETRS( 'No transpose', PWORK, MWORK, DWORK, LDW, IWORK,
     $                D, LDD, INFO )
C
C        For B and C as set up above, desired B = B - (C' * D).
C
         CALL DGEMM( 'Transpose', 'No transpose', N, MWORK, PWORK, -ONE,
     $               C, LDC, D, LDD, ONE, B, LDB )
C
C        Finally, calculate C: zero, apart from ...
C
         CALL DLASET( 'Full', PWORK, N, ZERO, ZERO, C, LDC )
C
C        PWORK ordered 'non-trivial' columns, equal to those
C        of inv(DWORK).
C
C        Workspace: need   PWORK*(PWORK + 1);
C                   prefer PWORK*PWORK + PWORK*NB.
C
         CALL DGETRI( PWORK, DWORK, LDW, IWORK, DWORK(JWORK),
     $                LDWORK-JWORK+1, INFO )
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
         JC = 0
         JW = 1
C
         DO 60 J = 1, PWORK
            IF ( INDEX(J).NE.0 ) THEN
               JC = JC + INDEX(J)
               CALL DCOPY( PWORK, DWORK(JW), 1, C(1,JC), 1 )
            END IF
            JW = JW + LDW
   60    CONTINUE
C
      END IF
C
C     For right matrix fraction, return to original (dual of dual)
C     system.
C
      IF ( .NOT.LLERI ) THEN
         CALL TC01OD( 'L', MWORK, PWORK, KPCOEF, PCOEFF, LDPCO1,
     $                LDPCO2, QCOEFF, LDQCO1, LDQCO2, INFO )
C
C        Also, obtain dual of state-space representation.
C
         CALL AB07MD( 'D', N, MWORK, PWORK, A, LDA, B, LDB, C, LDC, D,
     $                LDD, INFO )
      END IF
C
C     Set optimal workspace dimension.
C
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of TC04AD ***
      END