1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
SUBROUTINE TC05AD( LERI, M, P, SVAL, INDEX, PCOEFF, LDPCO1,
$ LDPCO2, QCOEFF, LDQCO1, LDQCO2, RCOND, CFREQR,
$ LDCFRE, IWORK, DWORK, ZWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To evaluate the transfer matrix T(s) of a left polynomial matrix
C representation [T(s) = inv(P(s))*Q(s)] or a right polynomial
C matrix representation [T(s) = Q(s)*inv(P(s))] at any specified
C complex frequency s = SVAL.
C
C This routine will calculate the standard frequency response
C matrix at frequency omega if SVAL is supplied as (0.0,omega).
C
C ARGUMENTS
C
C Mode Parameters
C
C LERI CHARACTER*1
C Indicates whether a left polynomial matrix representation
C or a right polynomial matrix representation is to be used
C to evaluate the transfer matrix as follows:
C = 'L': A left matrix fraction is input;
C = 'R': A right matrix fraction is input.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C SVAL (input) COMPLEX*16
C The frequency at which the transfer matrix or the
C frequency respose matrix is to be evaluated.
C For a standard frequency response set the real part
C of SVAL to zero.
C
C INDEX (input) INTEGER array, dimension (MAX(M,P))
C If LERI = 'L', INDEX(I), I = 1,2,...,P, must contain the
C maximum degree of the polynomials in the I-th row of the
C denominator matrix P(s) of the given left polynomial
C matrix representation.
C If LERI = 'R', INDEX(I), I = 1,2,...,M, must contain the
C maximum degree of the polynomials in the I-th column of
C the denominator matrix P(s) of the given right polynomial
C matrix representation.
C
C PCOEFF (input) DOUBLE PRECISION array, dimension
C (LDPCO1,LDPCO2,kpcoef), where kpcoef = MAX(INDEX(I)) + 1.
C If LERI = 'L' then porm = P, otherwise porm = M.
C The leading porm-by-porm-by-kpcoef part of this array must
C contain the coefficients of the denominator matrix P(s).
C PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
C of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if
C LERI = 'L' then iorj = I, otherwise iorj = J.
C Thus for LERI = 'L', P(s) =
C diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...).
C If LERI = 'R', PCOEFF is modified by the routine but
C restored on exit.
C
C LDPCO1 INTEGER
C The leading dimension of array PCOEFF.
C LDPCO1 >= MAX(1,P) if LERI = 'L',
C LDPCO1 >= MAX(1,M) if LERI = 'R'.
C
C LDPCO2 INTEGER
C The second dimension of array PCOEFF.
C LDPCO2 >= MAX(1,P) if LERI = 'L',
C LDPCO2 >= MAX(1,M) if LERI = 'R'.
C
C QCOEFF (input) DOUBLE PRECISION array, dimension
C (LDQCO1,LDQCO2,kpcoef)
C If LERI = 'L' then porp = M, otherwise porp = P.
C The leading porm-by-porp-by-kpcoef part of this array must
C contain the coefficients of the numerator matrix Q(s).
C QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
C If LERI = 'R', QCOEFF is modified by the routine but
C restored on exit.
C
C LDQCO1 INTEGER
C The leading dimension of array QCOEFF.
C LDQCO1 >= MAX(1,P) if LERI = 'L',
C LDQCO1 >= MAX(1,M,P) if LERI = 'R'.
C
C LDQCO2 INTEGER
C The second dimension of array QCOEFF.
C LDQCO2 >= MAX(1,M) if LERI = 'L',
C LDQCO2 >= MAX(1,M,P) if LERI = 'R'.
C
C RCOND (output) DOUBLE PRECISION
C The estimated reciprocal of the condition number of the
C denominator matrix P(SVAL).
C If RCOND is nearly zero, SVAL is approximately a system
C pole.
C
C CFREQR (output) COMPLEX*16 array, dimension (LDCFRE,MAX(M,P))
C The leading porm-by-porp part of this array contains the
C frequency response matrix T(SVAL).
C
C LDCFRE INTEGER
C The leading dimension of array CFREQR.
C LDCFRE >= MAX(1,P) if LERI = 'L',
C LDCFRE >= MAX(1,M,P) if LERI = 'R'.
C
C Workspace
C
C IWORK INTEGER array, dimension (liwork)
C where liwork = P, if LERI = 'L',
C liwork = M, if LERI = 'R'.
C
C DWORK DOUBLE PRECISION array, dimension (ldwork)
C where ldwork = 2*P, if LERI = 'L',
C ldwork = 2*M, if LERI = 'R'.
C
C ZWORK COMPLEX*16 array, dimension (lzwork),
C where lzwork = P*(P+2), if LERI = 'L',
C lzwork = M*(M+2), if LERI = 'R'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if P(SVAL) is exactly or nearly singular;
C no frequency response is calculated.
C
C METHOD
C
C The method for a left matrix fraction will be described here;
C right matrix fractions are dealt with by obtaining the dual left
C fraction and calculating its frequency response (see SLICOT
C Library routine TC01OD). The first step is to calculate the
C complex value P(SVAL) of the denominator matrix P(s) at the
C desired frequency SVAL. If P(SVAL) is approximately singular,
C SVAL is approximately a pole of this system and so the frequency
C response matrix T(SVAL) is not calculated; in this case, the
C routine returns with the Error Indicator (INFO) set to 1.
C Otherwise, the complex value Q(SVAL) of the numerator matrix Q(s)
C at frequency SVAL is calculated in a similar way to P(SVAL), and
C the desired response matrix T(SVAL) = inv(P(SVAL))*Q(SVAL) is
C found by solving the corresponding system of complex linear
C equations.
C
C REFERENCES
C
C None
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C Supersedes Release 2.0 routine TC01AD by T.W.C.Williams, Kingston
C Polytechnic, United Kingdom, March 1982.
C
C REVISIONS
C
C February 22, 1998 (changed the name of TC01MD).
C
C KEYWORDS
C
C Coprime matrix fraction, elementary polynomial operations,
C polynomial matrix, state-space representation, transfer matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER LERI
INTEGER INFO, LDCFRE, LDPCO1, LDPCO2, LDQCO1, LDQCO2, M,
$ P
DOUBLE PRECISION RCOND
COMPLEX*16 SVAL
C .. Array Arguments ..
INTEGER INDEX(*), IWORK(*)
DOUBLE PRECISION DWORK(*), PCOEFF(LDPCO1,LDPCO2,*),
$ QCOEFF(LDQCO1,LDQCO2,*)
COMPLEX*16 CFREQR(LDCFRE,*), ZWORK(*)
C .. Local Scalars ..
LOGICAL LLERI
INTEGER I, IZWORK, IJ, INFO1, J, K, KPCOEF, LDZWOR,
$ MAXIND, MINMP, MPLIM, MWORK, PWORK
DOUBLE PRECISION CNORM
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL DLAMCH, LSAME, ZLANGE
C .. External Subroutines ..
EXTERNAL TC01OD, XERBLA, ZCOPY, ZGECON, ZGETRF, ZGETRS,
$ ZSWAP
C .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
LLERI = LSAME( LERI, 'L' )
MPLIM = MAX( M, P )
C
C Test the input scalar arguments.
C
IF( .NOT.LLERI .AND. .NOT.LSAME( LERI, 'R' ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( ( LLERI .AND. LDPCO1.LT.MAX( 1, P ) ) .OR.
$ ( .NOT.LLERI .AND. LDPCO1.LT.MAX( 1, M ) ) ) THEN
INFO = -7
ELSE IF( ( LLERI .AND. LDPCO2.LT.MAX( 1, P ) ) .OR.
$ ( .NOT.LLERI .AND. LDPCO2.LT.MAX( 1, M ) ) ) THEN
INFO = -8
ELSE IF( ( LLERI .AND. LDQCO1.LT.MAX( 1, P ) ) .OR.
$ ( .NOT.LLERI .AND. LDQCO1.LT.MAX( 1, M, P ) ) ) THEN
INFO = -10
ELSE IF( ( LLERI .AND. LDQCO2.LT.MAX( 1, M ) ) .OR.
$ ( .NOT.LLERI .AND. LDQCO2.LT.MAX( 1, MPLIM ) ) ) THEN
INFO = -11
ELSE IF( ( LLERI .AND. LDCFRE.LT.MAX( 1, P ) ) .OR.
$ ( .NOT.LLERI .AND. LDCFRE.LT.MAX( 1, MPLIM ) ) ) THEN
INFO = -14
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TC05AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( M.EQ.0 .OR. P.EQ.0 ) THEN
RCOND = ONE
RETURN
END IF
C
IF ( LLERI ) THEN
C
C Initialization for left matrix fraction.
C
PWORK = P
MWORK = M
ELSE
C
C Initialization for right matrix fraction: obtain dual system.
C
PWORK = M
MWORK = P
IF ( MPLIM.GT.1 )
$ CALL TC01OD( 'R', M, P, KPCOEF, PCOEFF, LDPCO1, LDPCO2,
$ QCOEFF, LDQCO1, LDQCO2, INFO )
END IF
C
LDZWOR = PWORK
IZWORK = LDZWOR*LDZWOR + 1
MAXIND = 0
C
DO 10 I = 1, PWORK
IF ( INDEX(I).GT.MAXIND ) MAXIND = INDEX(I)
10 CONTINUE
C
KPCOEF = MAXIND + 1
C
C Calculate the complex denominator matrix P(SVAL), row by row.
C
DO 50 I = 1, PWORK
IJ = I
C
DO 20 J = 1, PWORK
ZWORK(IJ) = DCMPLX( PCOEFF(I,J,1), ZERO )
IJ = IJ + PWORK
20 CONTINUE
C
C Possibly non-constant row: finish evaluating it.
C
DO 40 K = 2, INDEX(I) + 1
C
IJ = I
C
DO 30 J = 1, PWORK
ZWORK(IJ) = ( SVAL*ZWORK(IJ) ) +
$ DCMPLX( PCOEFF(I,J,K), ZERO )
IJ = IJ + PWORK
30 CONTINUE
C
40 CONTINUE
C
50 CONTINUE
C
C Check if this P(SVAL) is singular: if so, don't compute T(SVAL).
C Note that DWORK is not actually referenced in ZLANGE routine.
C
CNORM = ZLANGE( '1-norm', PWORK, PWORK, ZWORK, LDZWOR, DWORK )
C
CALL ZGETRF( PWORK, PWORK, ZWORK, LDZWOR, IWORK, INFO )
C
IF ( INFO.GT.0 ) THEN
C
C Singular matrix. Set INFO and RCOND for error return.
C
INFO = 1
RCOND = ZERO
ELSE
C
C Estimate the reciprocal condition of P(SVAL).
C Workspace: ZWORK: PWORK*PWORK + 2*PWORK, DWORK: 2*PWORK.
C
CALL ZGECON( '1-norm', PWORK, ZWORK, LDZWOR, CNORM, RCOND,
$ ZWORK(IZWORK), DWORK, INFO )
C
IF ( RCOND.LE.DLAMCH( 'Epsilon' ) ) THEN
C
C Nearly singular matrix. Set INFO for error return.
C
INFO = 1
ELSE
C
C Calculate the complex numerator matrix Q(SVAL), row by row.
C
DO 90 I = 1, PWORK
C
DO 60 J = 1, MWORK
CFREQR(I,J) = DCMPLX( QCOEFF(I,J,1), ZERO )
60 CONTINUE
C
C Possibly non-constant row: finish evaluating it.
C
DO 80 K = 2, INDEX(I) + 1
C
DO 70 J = 1, MWORK
CFREQR(I,J) = ( SVAL*CFREQR(I,J) ) +
$ DCMPLX( QCOEFF(I,J,K), ZERO )
70 CONTINUE
C
80 CONTINUE
C
90 CONTINUE
C
C Now calculate frequency response T(SVAL).
C
CALL ZGETRS( 'No transpose', PWORK, MWORK, ZWORK, LDZWOR,
$ IWORK, CFREQR, LDCFRE, INFO )
END IF
END IF
C
C For right matrix fraction, return to original (dual of the dual)
C system.
C
IF ( ( .NOT.LLERI ) .AND. ( MPLIM.NE.1 ) ) THEN
CALL TC01OD( 'L', MWORK, PWORK, KPCOEF, PCOEFF, LDPCO1,
$ LDPCO2, QCOEFF, LDQCO1, LDQCO2, INFO1 )
C
IF ( INFO.EQ.0 ) THEN
C
C Also, transpose T(SVAL) here if this was successfully
C calculated.
C
MINMP = MIN( M, P )
C
DO 100 J = 1, MPLIM
IF ( J.LT.MINMP ) THEN
CALL ZSWAP( MINMP-J, CFREQR(J+1,J), 1, CFREQR(J,J+1),
$ LDCFRE )
ELSE IF ( J.GT.P ) THEN
CALL ZCOPY( P, CFREQR(1,J), 1, CFREQR(J,1), LDCFRE )
ELSE IF ( J.GT.M ) THEN
CALL ZCOPY( M, CFREQR(J,1), LDCFRE, CFREQR(1,J), 1 )
END IF
100 CONTINUE
C
END IF
END IF
C
RETURN
C *** Last line of TC05AD ***
END
|