File: TC05AD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (403 lines) | stat: -rw-r--r-- 13,793 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
      SUBROUTINE TC05AD( LERI, M, P, SVAL, INDEX, PCOEFF, LDPCO1,
     $                   LDPCO2, QCOEFF, LDQCO1, LDQCO2, RCOND, CFREQR,
     $                   LDCFRE, IWORK, DWORK, ZWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To evaluate the transfer matrix T(s) of a left polynomial matrix
C     representation [T(s) = inv(P(s))*Q(s)] or a right polynomial
C     matrix representation [T(s) = Q(s)*inv(P(s))] at any specified
C     complex frequency s = SVAL.
C
C     This routine will calculate the standard frequency response
C     matrix at frequency omega if SVAL is supplied as (0.0,omega).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     LERI    CHARACTER*1
C             Indicates whether a left polynomial matrix representation
C             or a right polynomial matrix representation is to be used
C             to evaluate the transfer matrix as follows:
C             = 'L':  A left matrix fraction is input;
C             = 'R':  A right matrix fraction is input.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     SVAL    (input) COMPLEX*16
C             The frequency at which the transfer matrix or the
C             frequency respose matrix is to be evaluated.
C             For a standard frequency response set the real part
C             of SVAL to zero.
C
C     INDEX   (input) INTEGER array, dimension (MAX(M,P))
C             If LERI = 'L', INDEX(I), I = 1,2,...,P, must contain the
C             maximum degree of the polynomials in the I-th row of the
C             denominator matrix P(s) of the given left polynomial
C             matrix representation.
C             If LERI = 'R', INDEX(I), I = 1,2,...,M, must contain the
C             maximum degree of the polynomials in the I-th column of
C             the denominator matrix P(s) of the given right polynomial
C             matrix representation.
C
C     PCOEFF  (input) DOUBLE PRECISION array, dimension
C             (LDPCO1,LDPCO2,kpcoef), where kpcoef = MAX(INDEX(I)) + 1.
C             If LERI = 'L' then porm = P, otherwise porm = M.
C             The leading porm-by-porm-by-kpcoef part of this array must
C             contain the coefficients of the denominator matrix P(s).
C             PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
C             of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if
C             LERI = 'L' then iorj = I, otherwise iorj = J.
C             Thus for LERI = 'L', P(s) =
C             diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...).
C             If LERI = 'R', PCOEFF is modified by the routine but
C             restored on exit.
C
C     LDPCO1  INTEGER
C             The leading dimension of array PCOEFF.
C             LDPCO1 >= MAX(1,P) if LERI = 'L',
C             LDPCO1 >= MAX(1,M) if LERI = 'R'.
C
C     LDPCO2  INTEGER
C             The second dimension of array PCOEFF.
C             LDPCO2 >= MAX(1,P) if LERI = 'L',
C             LDPCO2 >= MAX(1,M) if LERI = 'R'.
C
C     QCOEFF  (input) DOUBLE PRECISION array, dimension
C             (LDQCO1,LDQCO2,kpcoef)
C             If LERI = 'L' then porp = M, otherwise porp = P.
C             The leading porm-by-porp-by-kpcoef part of this array must
C             contain the coefficients of the numerator matrix Q(s).
C             QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
C             If LERI = 'R', QCOEFF is modified by the routine but
C             restored on exit.
C
C     LDQCO1  INTEGER
C             The leading dimension of array QCOEFF.
C             LDQCO1 >= MAX(1,P)   if LERI = 'L',
C             LDQCO1 >= MAX(1,M,P) if LERI = 'R'.
C
C     LDQCO2  INTEGER
C             The second dimension of array QCOEFF.
C             LDQCO2 >= MAX(1,M)   if LERI = 'L',
C             LDQCO2 >= MAX(1,M,P) if LERI = 'R'.
C
C     RCOND   (output) DOUBLE PRECISION
C             The estimated reciprocal of the condition number of the
C             denominator matrix P(SVAL).
C             If RCOND is nearly zero, SVAL is approximately a system
C             pole.
C
C     CFREQR  (output) COMPLEX*16 array, dimension (LDCFRE,MAX(M,P))
C             The leading porm-by-porp part of this array contains the
C             frequency response matrix T(SVAL).
C
C     LDCFRE  INTEGER
C             The leading dimension of array CFREQR.
C             LDCFRE >= MAX(1,P)   if LERI = 'L',
C             LDCFRE >= MAX(1,M,P) if LERI = 'R'.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (liwork)
C             where liwork = P, if LERI = 'L',
C                   liwork = M, if LERI = 'R'.
C
C     DWORK   DOUBLE PRECISION array, dimension (ldwork)
C             where ldwork = 2*P, if LERI = 'L',
C                   ldwork = 2*M, if LERI = 'R'.
C
C     ZWORK   COMPLEX*16 array, dimension (lzwork),
C             where lzwork = P*(P+2), if LERI = 'L',
C                   lzwork = M*(M+2), if LERI = 'R'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if P(SVAL) is exactly or nearly singular;
C                   no frequency response is calculated.
C
C     METHOD
C
C     The method for a left matrix fraction will be described here;
C     right matrix fractions are dealt with by obtaining the dual left
C     fraction and calculating its frequency response (see SLICOT
C     Library routine TC01OD). The first step is to calculate the
C     complex value P(SVAL) of the denominator matrix P(s) at the
C     desired frequency SVAL. If P(SVAL) is approximately singular,
C     SVAL is approximately a pole of this system and so the frequency
C     response matrix T(SVAL) is not calculated; in this case, the
C     routine returns with the Error Indicator (INFO) set to 1.
C     Otherwise, the complex value Q(SVAL) of the numerator matrix Q(s)
C     at frequency SVAL is calculated in a similar way to P(SVAL), and
C     the desired response matrix T(SVAL) = inv(P(SVAL))*Q(SVAL) is
C     found by solving the corresponding system of complex linear
C     equations.
C
C     REFERENCES
C
C     None
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C     Supersedes Release 2.0 routine TC01AD by T.W.C.Williams, Kingston
C     Polytechnic, United Kingdom, March 1982.
C
C     REVISIONS
C
C     February 22, 1998 (changed the name of TC01MD).
C
C     KEYWORDS
C
C     Coprime matrix fraction, elementary polynomial operations,
C     polynomial matrix, state-space representation, transfer matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         LERI
      INTEGER           INFO, LDCFRE, LDPCO1, LDPCO2, LDQCO1, LDQCO2, M,
     $                  P
      DOUBLE PRECISION  RCOND
      COMPLEX*16        SVAL
C     .. Array Arguments ..
      INTEGER           INDEX(*), IWORK(*)
      DOUBLE PRECISION  DWORK(*), PCOEFF(LDPCO1,LDPCO2,*),
     $                  QCOEFF(LDQCO1,LDQCO2,*)
      COMPLEX*16        CFREQR(LDCFRE,*), ZWORK(*)
C     .. Local Scalars ..
      LOGICAL           LLERI
      INTEGER           I, IZWORK, IJ, INFO1, J, K, KPCOEF, LDZWOR,
     $                  MAXIND, MINMP, MPLIM, MWORK, PWORK
      DOUBLE PRECISION  CNORM
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, ZLANGE
      EXTERNAL          DLAMCH, LSAME, ZLANGE
C     .. External Subroutines ..
      EXTERNAL          TC01OD, XERBLA, ZCOPY, ZGECON, ZGETRF, ZGETRS,
     $                  ZSWAP
C     .. Intrinsic Functions ..
      INTRINSIC         DCMPLX, MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
      LLERI = LSAME( LERI, 'L' )
      MPLIM = MAX( M, P )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LLERI .AND. .NOT.LSAME( LERI, 'R' ) ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( ( LLERI .AND. LDPCO1.LT.MAX( 1, P ) ) .OR.
     $    ( .NOT.LLERI .AND. LDPCO1.LT.MAX( 1, M ) ) ) THEN
         INFO = -7
      ELSE IF( ( LLERI .AND. LDPCO2.LT.MAX( 1, P ) ) .OR.
     $    ( .NOT.LLERI .AND. LDPCO2.LT.MAX( 1, M ) ) ) THEN
         INFO = -8
      ELSE IF( ( LLERI .AND. LDQCO1.LT.MAX( 1, P ) ) .OR.
     $    ( .NOT.LLERI .AND. LDQCO1.LT.MAX( 1, M, P ) ) ) THEN
         INFO = -10
      ELSE IF( ( LLERI .AND. LDQCO2.LT.MAX( 1, M ) ) .OR.
     $    ( .NOT.LLERI .AND. LDQCO2.LT.MAX( 1, MPLIM ) ) ) THEN
         INFO = -11
      ELSE IF( ( LLERI .AND. LDCFRE.LT.MAX( 1, P ) ) .OR.
     $    ( .NOT.LLERI .AND. LDCFRE.LT.MAX( 1, MPLIM ) ) ) THEN
         INFO = -14
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TC05AD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( M.EQ.0 .OR. P.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      END IF
C
      IF ( LLERI ) THEN
C
C        Initialization for left matrix fraction.
C
         PWORK = P
         MWORK = M
      ELSE
C
C        Initialization for right matrix fraction: obtain dual system.
C
         PWORK = M
         MWORK = P
         IF ( MPLIM.GT.1 )
     $      CALL TC01OD( 'R', M, P, KPCOEF, PCOEFF, LDPCO1, LDPCO2,
     $                   QCOEFF, LDQCO1, LDQCO2, INFO )
      END IF
C
      LDZWOR = PWORK
      IZWORK = LDZWOR*LDZWOR + 1
      MAXIND = 0
C
      DO 10 I = 1, PWORK
         IF ( INDEX(I).GT.MAXIND ) MAXIND = INDEX(I)
   10 CONTINUE
C
      KPCOEF = MAXIND + 1
C
C     Calculate the complex denominator matrix P(SVAL), row by row.
C
      DO 50 I = 1, PWORK
         IJ = I
C
         DO 20 J = 1, PWORK
            ZWORK(IJ) = DCMPLX( PCOEFF(I,J,1), ZERO )
            IJ = IJ + PWORK
   20    CONTINUE
C
C        Possibly non-constant row: finish evaluating it.
C
         DO 40 K = 2, INDEX(I) + 1
C
            IJ = I
C
            DO 30 J = 1, PWORK
               ZWORK(IJ) = ( SVAL*ZWORK(IJ) ) +
     $                       DCMPLX( PCOEFF(I,J,K), ZERO )
               IJ = IJ + PWORK
   30       CONTINUE
C
   40    CONTINUE
C
   50 CONTINUE
C
C     Check if this P(SVAL) is singular: if so, don't compute T(SVAL).
C     Note that DWORK is not actually referenced in ZLANGE routine.
C
      CNORM = ZLANGE( '1-norm', PWORK, PWORK, ZWORK, LDZWOR, DWORK )
C
      CALL ZGETRF( PWORK, PWORK, ZWORK, LDZWOR, IWORK, INFO )
C
      IF ( INFO.GT.0 ) THEN
C
C        Singular matrix.  Set INFO and RCOND for error return.
C
         INFO  = 1
         RCOND = ZERO
      ELSE
C
C        Estimate the reciprocal condition of P(SVAL).
C        Workspace: ZWORK: PWORK*PWORK + 2*PWORK, DWORK: 2*PWORK.
C
         CALL ZGECON( '1-norm', PWORK, ZWORK, LDZWOR, CNORM, RCOND,
     $                ZWORK(IZWORK), DWORK, INFO )
C
         IF ( RCOND.LE.DLAMCH( 'Epsilon' ) ) THEN
C
C           Nearly singular matrix.  Set INFO for error return.
C
            INFO  = 1
         ELSE
C
C           Calculate the complex numerator matrix Q(SVAL), row by row.
C
            DO 90 I = 1, PWORK
C
               DO 60 J = 1, MWORK
                  CFREQR(I,J) = DCMPLX( QCOEFF(I,J,1), ZERO )
   60          CONTINUE
C
C              Possibly non-constant row: finish evaluating it.
C
               DO 80 K = 2, INDEX(I) + 1
C
                  DO 70 J = 1, MWORK
                     CFREQR(I,J) = ( SVAL*CFREQR(I,J) ) +
     $                             DCMPLX( QCOEFF(I,J,K), ZERO )
   70             CONTINUE
C
   80          CONTINUE
C
   90       CONTINUE
C
C           Now calculate frequency response T(SVAL).
C
            CALL ZGETRS( 'No transpose', PWORK, MWORK, ZWORK, LDZWOR,
     $                   IWORK, CFREQR, LDCFRE, INFO )
         END IF
      END IF
C
C     For right matrix fraction, return to original (dual of the dual)
C     system.
C
      IF ( ( .NOT.LLERI ) .AND. ( MPLIM.NE.1 ) ) THEN
         CALL TC01OD( 'L', MWORK, PWORK, KPCOEF, PCOEFF, LDPCO1,
     $                LDPCO2, QCOEFF, LDQCO1, LDQCO2, INFO1 )
C
         IF ( INFO.EQ.0 ) THEN
C
C           Also, transpose T(SVAL) here if this was successfully
C           calculated.
C
            MINMP = MIN( M, P )
C
            DO 100 J = 1, MPLIM
               IF ( J.LT.MINMP ) THEN
                  CALL ZSWAP( MINMP-J, CFREQR(J+1,J), 1, CFREQR(J,J+1),
     $                        LDCFRE )
               ELSE IF ( J.GT.P ) THEN
                  CALL ZCOPY( P, CFREQR(1,J), 1, CFREQR(J,1), LDCFRE )
               ELSE IF ( J.GT.M ) THEN
                  CALL ZCOPY( M, CFREQR(J,1), LDCFRE, CFREQR(1,J), 1 )
               END IF
  100       CONTINUE
C
         END IF
      END IF
C
      RETURN
C *** Last line of TC05AD ***
      END