File: TD03AY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (171 lines) | stat: -rw-r--r-- 6,175 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
      SUBROUTINE TD03AY( MWORK, PWORK, INDEX, DCOEFF, LDDCOE, UCOEFF,
     $                   LDUCO1, LDUCO2, N, A, LDA, B, LDB, C, LDC, D,
     $                   LDD, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     Calculates a state-space representation for a (PWORK x MWORK)
C     transfer matrix given in the form of polynomial row vectors over
C     common denominators (not necessarily lcd's).  Such a description
C     is simply the polynomial matrix representation
C
C          T(s) = inv(D(s)) * U(s),
C
C     where D(s) is diagonal with (I,I)-th element D:I(s) of degree
C     INDEX(I); applying Wolovich's Observable Structure Theorem to
C     this left matrix fraction then yields an equivalent state-space
C     representation in observable companion form, of order
C     N = sum(INDEX(I)).  As D(s) is diagonal, the PWORK ordered
C     'non-trivial' columns of C and A are very simply calculated, these
C     submatrices being diagonal and (INDEX(I) x 1) - block diagonal,
C     respectively: finding B and D is also somewhat simpler than for
C     general P(s) as dealt with in TC04AD. Finally, the state-space
C     representation obtained here is not necessarily controllable
C     (as D(s) and U(s) are not necessarily relatively left prime), but
C     it is theoretically completely observable: however, its
C     observability matrix may be poorly conditioned, so it is safer
C     not to assume observability either.
C
C     REVISIONS
C
C     May 13, 1998.
C
C     KEYWORDS
C
C     Coprime matrix fraction, elementary polynomial operations,
C     polynomial matrix, state-space representation, transfer matrix.
C
C     ******************************************************************
C
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDDCOE, LDUCO1,
     $                  LDUCO2, MWORK, N, PWORK
C     .. Array Arguments ..
      INTEGER           INDEX(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DCOEFF(LDDCOE,*), UCOEFF(LDUCO1,LDUCO2,*)
C     .. Local Scalars ..
      INTEGER           I, IA, IBIAS, INDCUR, JA, JMAX1, K
      DOUBLE PRECISION  ABSDIA, ABSDMX, BIGNUM, DIAG, SMLNUM, UMAX1,
     $                  TEMP
C     .. External Functions ..
      INTEGER           IDAMAX
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH, IDAMAX
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DLASET, DSCAL
C     .. Intrinsic Functions ..
      INTRINSIC         ABS
C     .. Executable Statements ..
C
      INFO = 0
C
C     Initialize A and C to be zero, apart from 1's on the subdiagonal
C     of A.
C
      CALL DLASET( 'Upper', N, N, ZERO, ZERO, A, LDA )
      IF ( N.GT.1 ) CALL DLASET( 'Lower', N-1, N-1, ZERO, ONE, A(2,1),
     $                           LDA )
C
      CALL DLASET( 'Full', PWORK, N, ZERO, ZERO, C, LDC )
C
C     Calculate B and D, as well as 'non-trivial' elements of A and C.
C     Check if any leading coefficient of D(s) nearly zero: if so, exit.
C     Caution is taken to avoid overflow.
C
      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
      BIGNUM = ONE / SMLNUM
C
      IBIAS = 2
      JA = 0
C
      DO 20 I = 1, PWORK
         ABSDIA = ABS( DCOEFF(I,1) )
         JMAX1  = IDAMAX( MWORK, UCOEFF(I,1,1), LDUCO1 )
         UMAX1  = ABS( UCOEFF(I,JMAX1,1) )
         IF ( ( ABSDIA.LT.SMLNUM ) .OR.
     $        ( ABSDIA.LT.ONE .AND. UMAX1.GT.ABSDIA*BIGNUM ) ) THEN
C
C           Error return.
C
            INFO = I
            RETURN
         END IF
         DIAG   = ONE/DCOEFF(I,1)
         INDCUR = INDEX(I)
         IF ( INDCUR.NE.0 ) THEN
            IBIAS = IBIAS + INDCUR
            JA = JA + INDCUR
            IF ( INDCUR.GE.1 ) THEN
               JMAX1  = IDAMAX( INDCUR, DCOEFF(I,2), LDDCOE )
               ABSDMX = ABS( DCOEFF(I,JMAX1) )
               IF ( ABSDIA.GE.ONE ) THEN
                  IF ( UMAX1.GT.ONE ) THEN
                     IF ( ( ABSDMX/ABSDIA ).GT.( BIGNUM/UMAX1 ) ) THEN
C
C                       Error return.
C
                        INFO = I
                        RETURN
                     END IF
                  END IF
               ELSE
                  IF ( UMAX1.GT.ONE ) THEN
                     IF ( ABSDMX.GT.( BIGNUM*ABSDIA )/UMAX1 ) THEN
C
C                       Error return.
C
                        INFO = I
                        RETURN
                     END IF
                  END IF
               END IF
            END IF
C
C           I-th 'non-trivial' sub-vector of A given from coefficients
C           of D:I(s), while I-th row block of B given from this and
C           row I of U(s).
C
            DO 10 K = 2, INDCUR + 1
               IA = IBIAS - K
               TEMP = -DIAG*DCOEFF(I,K)
               A(IA,JA) = TEMP
C
               CALL DCOPY( MWORK, UCOEFF(I,1,K), LDUCO1, B(IA,1), LDB )
               CALL DAXPY( MWORK, TEMP, UCOEFF(I,1,1), LDUCO1, B(IA,1),
     $                     LDB )
   10       CONTINUE
C
            IF ( JA.LT.N ) A(JA+1,JA) = ZERO
C
C           Finally, I-th 'non-trivial' entry of C and row of D obtained
C           also.
C
            C(I,JA) = DIAG
         END IF
C
         CALL DCOPY( MWORK, UCOEFF(I,1,1), LDUCO1, D(I,1), LDD )
         CALL DSCAL( MWORK, DIAG, D(I,1), LDD )
   20 CONTINUE
C
      RETURN
C *** Last line of TD03AY ***
      END