1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
SUBROUTINE TD04AD( ROWCOL, M, P, INDEX, DCOEFF, LDDCOE, UCOEFF,
$ LDUCO1, LDUCO2, NR, A, LDA, B, LDB, C, LDC, D,
$ LDD, TOL, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To find a minimal state-space representation (A,B,C,D) for a
C proper transfer matrix T(s) given as either row or column
C polynomial vectors over denominator polynomials, possibly with
C uncancelled common terms.
C
C ARGUMENTS
C
C Mode Parameters
C
C ROWCOL CHARACTER*1
C Indicates whether the transfer matrix T(s) is given as
C rows or columns over common denominators as follows:
C = 'R': T(s) is given as rows over common denominators;
C = 'C': T(s) is given as columns over common denominators.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C INDEX (input) INTEGER array, dimension (porm), where porm = P,
C if ROWCOL = 'R', and porm = M, if ROWCOL = 'C'.
C This array must contain the degrees of the denominator
C polynomials in D(s).
C
C DCOEFF (input) DOUBLE PRECISION array, dimension (LDDCOE,kdcoef),
C where kdcoef = MAX(INDEX(I)) + 1.
C The leading porm-by-kdcoef part of this array must contain
C the coefficients of each denominator polynomial.
C DCOEFF(I,K) is the coefficient in s**(INDEX(I)-K+1) of the
C I-th denominator polynomial in D(s), where
C K = 1,2,...,kdcoef.
C
C LDDCOE INTEGER
C The leading dimension of array DCOEFF.
C LDDCOE >= MAX(1,P) if ROWCOL = 'R';
C LDDCOE >= MAX(1,M) if ROWCOL = 'C'.
C
C UCOEFF (input) DOUBLE PRECISION array, dimension
C (LDUCO1,LDUCO2,kdcoef)
C The leading P-by-M-by-kdcoef part of this array must
C contain the numerator matrix U(s); if ROWCOL = 'C', this
C array is modified internally but restored on exit, and the
C remainder of the leading MAX(M,P)-by-MAX(M,P)-by-kdcoef
C part is used as internal workspace.
C UCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
C of polynomial (I,J) of U(s), where K = 1,2,...,kdcoef;
C if ROWCOL = 'R' then iorj = I, otherwise iorj = J.
C Thus for ROWCOL = 'R', U(s) =
C diag(s**INDEX(I))*(UCOEFF(.,.,1)+UCOEFF(.,.,2)/s+...).
C
C LDUCO1 INTEGER
C The leading dimension of array UCOEFF.
C LDUCO1 >= MAX(1,P) if ROWCOL = 'R';
C LDUCO1 >= MAX(1,M,P) if ROWCOL = 'C'.
C
C LDUCO2 INTEGER
C The second dimension of array UCOEFF.
C LDUCO2 >= MAX(1,M) if ROWCOL = 'R';
C LDUCO2 >= MAX(1,M,P) if ROWCOL = 'C'.
C
C NR (output) INTEGER
C The order of the resulting minimal realization, i.e. the
C order of the state dynamics matrix A.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N),
C porm
C where N = SUM INDEX(I).
C I=1
C The leading NR-by-NR part of this array contains the upper
C block Hessenberg state dynamics matrix A of a minimal
C realization.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (output) DOUBLE PRECISION array, dimension (LDB,MAX(M,P))
C The leading NR-by-M part of this array contains the
C input/state matrix B of a minimal realization; the
C remainder of the leading N-by-MAX(M,P) part is used as
C internal workspace.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-NR part of this array contains the
C state/output matrix C of a minimal realization; the
C remainder of the leading MAX(M,P)-by-N part is used as
C internal workspace.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,M,P).
C
C D (output) DOUBLE PRECISION array, dimension (LDD,M),
C if ROWCOL = 'R', and (LDD,MAX(M,P)) if ROWCOL = 'C'.
C The leading P-by-M part of this array contains the direct
C transmission matrix D; if ROWCOL = 'C', the remainder of
C the leading MAX(M,P)-by-MAX(M,P) part is used as internal
C workspace.
C
C LDD INTEGER
C The leading dimension of array D.
C LDD >= MAX(1,P) if ROWCOL = 'R';
C LDD >= MAX(1,M,P) if ROWCOL = 'C'.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in rank determination when
C transforming (A, B, C). If the user sets TOL > 0, then
C the given value of TOL is used as a lower bound for the
C reciprocal condition number (see the description of the
C argument RCOND in the SLICOT routine MB03OD); a
C (sub)matrix whose estimated condition number is less than
C 1/TOL is considered to be of full rank. If the user sets
C TOL <= 0, then an implicitly computed, default tolerance
C (determined by the SLICOT routine TB01UD) is used instead.
C
C Workspace
C
C IWORK INTEGER array, dimension (N+MAX(M,P))
C On exit, if INFO = 0, the first nonzero elements of
C IWORK(1:N) return the orders of the diagonal blocks of A.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1, N + MAX(N, 3*M, 3*P)).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, then i is the first integer for which
C ABS( DCOEFF(I,1) ) is so small that the calculations
C would overflow (see SLICOT Library routine TD03AY);
C that is, the leading coefficient of a polynomial is
C nearly zero; no state-space representation is
C calculated.
C
C METHOD
C
C The method for transfer matrices factorized by rows will be
C described here: T(s) factorized by columns is dealt with by
C operating on the dual T'(s). This description for T(s) is
C actually the left polynomial matrix representation
C
C T(s) = inv(D(s))*U(s),
C
C where D(s) is diagonal with its (I,I)-th polynomial element of
C degree INDEX(I). The first step is to check whether the leading
C coefficient of any polynomial element of D(s) is approximately
C zero; if so the routine returns with INFO > 0. Otherwise,
C Wolovich's Observable Structure Theorem is used to construct a
C state-space representation in observable companion form which
C is equivalent to the above polynomial matrix representation.
C The method is particularly easy here due to the diagonal form
C of D(s). This state-space representation is not necessarily
C controllable (as D(s) and U(s) are not necessarily relatively
C left prime), but it is in theory completely observable; however,
C its observability matrix may be poorly conditioned, so it is
C treated as a general state-space representation and SLICOT
C Library routine TB01PD is then called to separate out a minimal
C realization from this general state-space representation by means
C of orthogonal similarity transformations.
C
C REFERENCES
C
C [1] Patel, R.V.
C Computation of Minimal-Order State-Space Realizations and
C Observability Indices using Orthogonal Transformations.
C Int. J. Control, 33, pp. 227-246, 1981.
C
C [2] Wolovich, W.A.
C Linear Multivariable Systems, (Theorem 4.3.3).
C Springer-Verlag, 1974.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, March 1998.
C Supersedes Release 3.0 routine TD01OD.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Controllability, elementary polynomial operations, minimal
C realization, polynomial matrix, state-space representation,
C transfer matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER ROWCOL
INTEGER INFO, LDA, LDB, LDC, LDD, LDDCOE, LDUCO1,
$ LDUCO2, LDWORK, M, NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER INDEX(*), IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DCOEFF(LDDCOE,*), DWORK(*),
$ UCOEFF(LDUCO1,LDUCO2,*)
C .. Local Scalars ..
LOGICAL LROCOC, LROCOR
INTEGER I, J, JSTOP, K, KDCOEF, MPLIM, MWORK, N, PWORK
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLASET, DSWAP, TB01PD, TB01XD, TD03AY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
INFO = 0
LROCOR = LSAME( ROWCOL, 'R' )
LROCOC = LSAME( ROWCOL, 'C' )
MPLIM = MAX( 1, M, P )
C
C Test the input scalar arguments.
C
IF( .NOT.LROCOR .AND. .NOT.LROCOC ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( ( LROCOR .AND. LDDCOE.LT.MAX( 1, P ) ) .OR.
$ ( LROCOC .AND. LDDCOE.LT.MAX( 1, M ) ) ) THEN
INFO = -6
ELSE IF( ( LROCOR .AND. LDUCO1.LT.MAX( 1, P ) ) .OR.
$ ( LROCOC .AND. LDUCO1.LT.MPLIM ) ) THEN
INFO = -8
ELSE IF( ( LROCOR .AND. LDUCO2.LT.MAX( 1, M ) ) .OR.
$ ( LROCOC .AND. LDUCO2.LT.MPLIM ) ) THEN
INFO = -9
END IF
C
N = 0
IF ( INFO.EQ.0 ) THEN
IF ( LROCOR ) THEN
C
C Initialization for T(s) given as rows over common
C denominators.
C
PWORK = P
MWORK = M
ELSE
C
C Initialization for T(s) given as columns over common
C denominators.
C
PWORK = M
MWORK = P
END IF
C
C Calculate N, the order of the resulting state-space
C representation.
C
KDCOEF = 0
C
DO 10 I = 1, PWORK
KDCOEF = MAX( KDCOEF, INDEX(I) )
N = N + INDEX(I)
10 CONTINUE
C
KDCOEF = KDCOEF + 1
C
IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDC.LT.MPLIM ) THEN
INFO = -16
ELSE IF( ( LROCOR .AND. LDD.LT.MAX( 1, P ) ) .OR.
$ ( LROCOC .AND. LDD.LT.MPLIM ) ) THEN
INFO = -18
ELSE IF( LDWORK.LT.MAX( 1, N + MAX( N, 3*M, 3*P ) ) ) THEN
INFO = -22
END IF
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TD04AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MAX( N, M, P ).EQ.0 ) THEN
NR = 0
DWORK(1) = ONE
RETURN
END IF
C
IF ( LROCOC ) THEN
C
C Initialize the remainder of the leading
C MPLIM-by-MPLIM-by-KDCOEF part of U(s) to zero.
C
IF ( P.LT.M ) THEN
C
DO 20 K = 1, KDCOEF
CALL DLASET( 'Full', M-P, MPLIM, ZERO, ZERO,
$ UCOEFF(P+1,1,K), LDUCO1 )
20 CONTINUE
C
ELSE IF ( P.GT.M ) THEN
C
DO 30 K = 1, KDCOEF
CALL DLASET( 'Full', MPLIM, P-M, ZERO, ZERO,
$ UCOEFF(1,M+1,K), LDUCO1 )
30 CONTINUE
C
END IF
C
IF ( MPLIM.NE.1 ) THEN
C
C Non-scalar T(s) factorized by columns: transpose it (i.e.
C U(s)).
C
JSTOP = MPLIM - 1
C
DO 50 K = 1, KDCOEF
C
DO 40 J = 1, JSTOP
CALL DSWAP( MPLIM-J, UCOEFF(J+1,J,K), 1,
$ UCOEFF(J,J+1,K), LDUCO1 )
40 CONTINUE
C
50 CONTINUE
C
END IF
END IF
C
C Construct non-minimal state-space representation (by Wolovich's
C Structure Theorem) which has transfer matrix T(s) or T'(s) as
C appropriate ...
C
CALL TD03AY( MWORK, PWORK, INDEX, DCOEFF, LDDCOE, UCOEFF, LDUCO1,
$ LDUCO2, N, A, LDA, B, LDB, C, LDC, D, LDD, INFO )
IF ( INFO.GT.0 )
$ RETURN
C
C and then separate out a minimal realization from this.
C
C Workspace: need N + MAX(N, 3*MWORK, 3*PWORK).
C
CALL TB01PD( 'Minimal', 'Scale', N, MWORK, PWORK, A, LDA, B, LDB,
$ C, LDC, NR, TOL, IWORK, DWORK, LDWORK, INFO )
C
IF ( LROCOC ) THEN
C
C If T(s) originally factorized by columns, find dual of minimal
C state-space representation, and reorder the rows and columns
C to get an upper block Hessenberg state dynamics matrix.
C
K = IWORK(1)+IWORK(2)-1
CALL TB01XD( 'D', NR, MWORK, PWORK, K, NR-1, A, LDA, B, LDB,
$ C, LDC, D, LDD, INFO )
IF ( MPLIM.NE.1 ) THEN
C
C Also, retranspose U(s) if this is non-scalar.
C
DO 70 K = 1, KDCOEF
C
DO 60 J = 1, JSTOP
CALL DSWAP( MPLIM-J, UCOEFF(J+1,J,K), 1,
$ UCOEFF(J,J+1,K), LDUCO1 )
60 CONTINUE
C
70 CONTINUE
C
END IF
END IF
C
RETURN
C *** Last line of TD04AD ***
END
|