File: TF01MD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (233 lines) | stat: -rw-r--r-- 7,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
      SUBROUTINE TF01MD( N, M, P, NY, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   U, LDU, X, Y, LDY, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the output sequence of a linear time-invariant
C     open-loop system given by its discrete-time state-space model
C     (A,B,C,D), where A is an N-by-N general matrix.
C
C     The initial state vector x(1) must be supplied by the user.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     NY      (input) INTEGER
C             The number of output vectors y(k) to be computed.
C             NY >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             state matrix A of the system.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             input matrix B of the system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading P-by-N part of this array must contain the
C             output matrix C of the system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading P-by-M part of this array must contain the
C             direct link matrix D of the system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     U       (input) DOUBLE PRECISION array, dimension (LDU,NY)
C             The leading M-by-NY part of this array must contain the
C             input vector sequence u(k), for k = 1,2,...,NY.
C             Specifically, the k-th column of U must contain u(k).
C
C     LDU     INTEGER
C             The leading dimension of array U.  LDU >= MAX(1,M).
C
C     X       (input/output) DOUBLE PRECISION array, dimension (N)
C             On entry, this array must contain the initial state vector
C             x(1) which consists of the N initial states of the system.
C             On exit, this array contains the final state vector
C             x(NY+1) of the N states of the system at instant NY.
C
C     Y       (output) DOUBLE PRECISION array, dimension (LDY,NY)
C             The leading P-by-NY part of this array contains the output
C             vector sequence y(1),y(2),...,y(NY) such that the k-th
C             column of Y contains y(k) (the outputs at instant k),
C             for k = 1,2,...,NY.
C
C     LDY     INTEGER
C             The leading dimension of array Y.  LDY >= MAX(1,P).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Given an initial state vector x(1), the output vector sequence
C     y(1), y(2),..., y(NY) is obtained via the formulae
C
C        x(k+1) = A x(k) + B u(k)
C        y(k)   = C x(k) + D u(k),
C
C     where each element y(k) is a vector of length P containing the
C     outputs at instant k and k = 1,2,...,NY.
C
C     REFERENCES
C
C     [1] Luenberger, D.G.
C         Introduction to Dynamic Systems: Theory, Models and
C         Applications.
C         John Wiley & Sons, New York, 1979.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires approximately (N + M) x (N + P) x NY
C     multiplications and additions.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C     Supersedes Release 2.0 routine TF01AD by S. Van Huffel, Katholieke
C     Univ. Leuven, Belgium.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Apr. 2003.
C
C     KEYWORDS
C
C     Discrete-time system, multivariable system, state-space model,
C     state-space representation, time response.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDU, LDY, M, N, NY, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), U(LDU,*), X(*), Y(LDY,*)
C     .. Local Scalars ..
      INTEGER           IK
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DGEMV, DLASET, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
C
C     Test the input scalar arguments.
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( NY.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -10
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -12
      ELSE IF( LDU.LT.MAX( 1, M ) ) THEN
         INFO = -14
      ELSE IF( LDY.LT.MAX( 1, P ) ) THEN
         INFO = -17
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TF01MD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( P, NY ).EQ.0 ) THEN
         RETURN
      ELSE IF ( N.EQ.0 ) THEN
C
C        Non-dynamic system: compute the output vectors.
C
         IF ( M.EQ.0 ) THEN
            CALL DLASET( 'Full', P, NY, ZERO, ZERO, Y, LDY )
         ELSE
            CALL DGEMM( 'No transpose', 'No transpose', P, NY, M, ONE,
     $                  D, LDD, U, LDU, ZERO, Y, LDY )
         END IF
         RETURN
      END IF
C
      DO 10 IK = 1, NY
         CALL DGEMV( 'No transpose', P, N, ONE, C, LDC, X, 1, ZERO,
     $               Y(1,IK), 1 )
C
         CALL DGEMV( 'No transpose', N, N, ONE, A, LDA, X, 1, ZERO,
     $               DWORK, 1 )
         CALL DGEMV( 'No transpose', N, M, ONE, B, LDB, U(1,IK), 1, ONE,
     $               DWORK, 1 )
C
         CALL DCOPY( N, DWORK, 1, X, 1 )
   10 CONTINUE
C
      CALL DGEMM( 'No transpose', 'No transpose', P, NY, M, ONE, D, LDD,
     $            U, LDU, ONE, Y, LDY )
C
      RETURN
C *** Last line of TF01MD ***
      END