1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
SUBROUTINE TF01MD( N, M, P, NY, A, LDA, B, LDB, C, LDC, D, LDD,
$ U, LDU, X, Y, LDY, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the output sequence of a linear time-invariant
C open-loop system given by its discrete-time state-space model
C (A,B,C,D), where A is an N-by-N general matrix.
C
C The initial state vector x(1) must be supplied by the user.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NY (input) INTEGER
C The number of output vectors y(k) to be computed.
C NY >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C state matrix A of the system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input matrix B of the system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must contain the
C output matrix C of the system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array must contain the
C direct link matrix D of the system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C U (input) DOUBLE PRECISION array, dimension (LDU,NY)
C The leading M-by-NY part of this array must contain the
C input vector sequence u(k), for k = 1,2,...,NY.
C Specifically, the k-th column of U must contain u(k).
C
C LDU INTEGER
C The leading dimension of array U. LDU >= MAX(1,M).
C
C X (input/output) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain the initial state vector
C x(1) which consists of the N initial states of the system.
C On exit, this array contains the final state vector
C x(NY+1) of the N states of the system at instant NY.
C
C Y (output) DOUBLE PRECISION array, dimension (LDY,NY)
C The leading P-by-NY part of this array contains the output
C vector sequence y(1),y(2),...,y(NY) such that the k-th
C column of Y contains y(k) (the outputs at instant k),
C for k = 1,2,...,NY.
C
C LDY INTEGER
C The leading dimension of array Y. LDY >= MAX(1,P).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Given an initial state vector x(1), the output vector sequence
C y(1), y(2),..., y(NY) is obtained via the formulae
C
C x(k+1) = A x(k) + B u(k)
C y(k) = C x(k) + D u(k),
C
C where each element y(k) is a vector of length P containing the
C outputs at instant k and k = 1,2,...,NY.
C
C REFERENCES
C
C [1] Luenberger, D.G.
C Introduction to Dynamic Systems: Theory, Models and
C Applications.
C John Wiley & Sons, New York, 1979.
C
C NUMERICAL ASPECTS
C
C The algorithm requires approximately (N + M) x (N + P) x NY
C multiplications and additions.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C Supersedes Release 2.0 routine TF01AD by S. Van Huffel, Katholieke
C Univ. Leuven, Belgium.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2003.
C
C KEYWORDS
C
C Discrete-time system, multivariable system, state-space model,
C state-space representation, time response.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDD, LDU, LDY, M, N, NY, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), U(LDU,*), X(*), Y(LDY,*)
C .. Local Scalars ..
INTEGER IK
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEMV, DLASET, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C .. Executable Statements ..
C
INFO = 0
C
C Test the input scalar arguments.
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( NY.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -10
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -12
ELSE IF( LDU.LT.MAX( 1, M ) ) THEN
INFO = -14
ELSE IF( LDY.LT.MAX( 1, P ) ) THEN
INFO = -17
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TF01MD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( P, NY ).EQ.0 ) THEN
RETURN
ELSE IF ( N.EQ.0 ) THEN
C
C Non-dynamic system: compute the output vectors.
C
IF ( M.EQ.0 ) THEN
CALL DLASET( 'Full', P, NY, ZERO, ZERO, Y, LDY )
ELSE
CALL DGEMM( 'No transpose', 'No transpose', P, NY, M, ONE,
$ D, LDD, U, LDU, ZERO, Y, LDY )
END IF
RETURN
END IF
C
DO 10 IK = 1, NY
CALL DGEMV( 'No transpose', P, N, ONE, C, LDC, X, 1, ZERO,
$ Y(1,IK), 1 )
C
CALL DGEMV( 'No transpose', N, N, ONE, A, LDA, X, 1, ZERO,
$ DWORK, 1 )
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB, U(1,IK), 1, ONE,
$ DWORK, 1 )
C
CALL DCOPY( N, DWORK, 1, X, 1 )
10 CONTINUE
C
CALL DGEMM( 'No transpose', 'No transpose', P, NY, M, ONE, D, LDD,
$ U, LDU, ONE, Y, LDY )
C
RETURN
C *** Last line of TF01MD ***
END
|