1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
SUBROUTINE TF01MY( N, M, P, NY, A, LDA, B, LDB, C, LDC, D, LDD,
$ U, LDU, X, Y, LDY, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the output sequence of a linear time-invariant
C open-loop system given by its discrete-time state-space model
C (A,B,C,D), where A is an N-by-N general matrix.
C
C The initial state vector x(1) must be supplied by the user.
C
C This routine differs from SLICOT Library routine TF01MD in the
C way the input and output trajectories are stored.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NY (input) INTEGER
C The number of output vectors y(k) to be computed.
C NY >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C state matrix A of the system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input matrix B of the system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must contain the
C output matrix C of the system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array must contain the
C direct link matrix D of the system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C U (input) DOUBLE PRECISION array, dimension (LDU,M)
C The leading NY-by-M part of this array must contain the
C input vector sequence u(k), for k = 1,2,...,NY.
C Specifically, the k-th row of U must contain u(k)'.
C
C LDU INTEGER
C The leading dimension of array U. LDU >= MAX(1,NY).
C
C X (input/output) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain the initial state vector
C x(1) which consists of the N initial states of the system.
C On exit, this array contains the final state vector
C x(NY+1) of the N states of the system at instant NY+1.
C
C Y (output) DOUBLE PRECISION array, dimension (LDY,P)
C The leading NY-by-P part of this array contains the output
C vector sequence y(1),y(2),...,y(NY) such that the k-th
C row of Y contains y(k)' (the outputs at instant k),
C for k = 1,2,...,NY.
C
C LDY INTEGER
C The leading dimension of array Y. LDY >= MAX(1,NY).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= N.
C For better performance, LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Given an initial state vector x(1), the output vector sequence
C y(1), y(2),..., y(NY) is obtained via the formulae
C
C x(k+1) = A x(k) + B u(k)
C y(k) = C x(k) + D u(k),
C
C where each element y(k) is a vector of length P containing the
C outputs at instant k and k = 1,2,...,NY.
C
C REFERENCES
C
C [1] Luenberger, D.G.
C Introduction to Dynamic Systems: Theory, Models and
C Applications.
C John Wiley & Sons, New York, 1979.
C
C NUMERICAL ASPECTS
C
C The algorithm requires approximately (N + M) x (N + P) x NY
C multiplications and additions.
C
C FURTHER COMMENTS
C
C The implementation exploits data locality and uses BLAS 3
C operations as much as possible, given the workspace length.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Discrete-time system, multivariable system, state-space model,
C state-space representation, time response.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDD, LDU, LDWORK, LDY, M,
$ N, NY, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), U(LDU,*), X(*), Y(LDY,*)
C .. Local Scalars ..
INTEGER IK, IREM, IS, IYL, MAXN, NB, NS
DOUBLE PRECISION UPD
C .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEMV, DLASET, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C .. Executable Statements ..
C
INFO = 0
C
C Test the input scalar arguments.
C
MAXN = MAX( 1, N )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 ) THEN
INFO = -3
ELSE IF( NY.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAXN ) THEN
INFO = -6
ELSE IF( LDB.LT.MAXN ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -10
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -12
ELSE IF( LDU.LT.MAX( 1, NY ) ) THEN
INFO = -14
ELSE IF( LDY.LT.MAX( 1, NY ) ) THEN
INFO = -17
ELSE IF( LDWORK.LT.N ) THEN
INFO = -19
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TF01MY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( NY, P ).EQ.0 ) THEN
RETURN
ELSE IF ( N.EQ.0 ) THEN
C
C Non-dynamic system: compute the output vectors.
C
IF ( M.EQ.0 ) THEN
CALL DLASET( 'Full', NY, P, ZERO, ZERO, Y, LDY )
ELSE
CALL DGEMM( 'No transpose', 'Transpose', NY, P, M, ONE,
$ U, LDU, D, LDD, ZERO, Y, LDY )
END IF
RETURN
END IF
C
C Determine the block size (taken as for LAPACK routine DGETRF).
C
NB = ILAENV( 1, 'DGETRF', ' ', NY, MAX( M, P ), -1, -1 )
C
C Find the number of state vectors that can be accommodated in
C the provided workspace and initialize.
C
NS = MIN( LDWORK/N, NB*NB/N, NY )
C
IF ( NS.LE.1 .OR. NY*MAX( M, P ).LE.NB*NB ) THEN
C
C LDWORK < 2*N or small problem:
C only BLAS 2 calculations are used in the loop
C for computing the output corresponding to D = 0.
C One row of the array Y is computed for each loop index value.
C
DO 10 IK = 1, NY
CALL DGEMV( 'No transpose', P, N, ONE, C, LDC, X, 1, ZERO,
$ Y(IK,1), LDY )
C
CALL DGEMV( 'No transpose', N, N, ONE, A, LDA, X, 1, ZERO,
$ DWORK, 1 )
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB, U(IK,1), LDU,
$ ONE, DWORK, 1 )
C
CALL DCOPY( N, DWORK, 1, X, 1 )
10 CONTINUE
C
ELSE
C
C LDWORK >= 2*N and large problem:
C some BLAS 3 calculations can also be used.
C
IYL = ( NY/NS )*NS
IF ( M.EQ.0 ) THEN
UPD = ZERO
ELSE
UPD = ONE
END IF
C
CALL DCOPY( N, X, 1, DWORK, 1 )
C
DO 30 IK = 1, IYL, NS
C
C Compute the current NS-1 state vectors in the workspace.
C
CALL DGEMM( 'No transpose', 'Transpose', N, NS-1, M, ONE,
$ B, LDB, U(IK,1), LDU, ZERO, DWORK(N+1), MAXN )
C
DO 20 IS = 1, NS - 1
CALL DGEMV( 'No transpose', N, N, ONE, A, LDA,
$ DWORK((IS-1)*N+1), 1, UPD, DWORK(IS*N+1), 1 )
20 CONTINUE
C
C Initialize the current NS output vectors.
C
CALL DGEMM( 'Transpose', 'Transpose', NS, P, N, ONE, DWORK,
$ MAXN, C, LDC, ZERO, Y(IK,1), LDY )
C
C Prepare the next iteration.
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ U(IK+NS-1,1), LDU, ZERO, DWORK, 1 )
CALL DGEMV( 'No transpose', N, N, ONE, A, LDA,
$ DWORK((NS-1)*N+1), 1, UPD, DWORK, 1 )
30 CONTINUE
C
IREM = NY - IYL
C
IF ( IREM.GT.1 ) THEN
C
C Compute the last IREM output vectors.
C First, compute the current IREM-1 state vectors.
C
IK = IYL + 1
CALL DGEMM( 'No transpose', 'Transpose', N, IREM-1, M, ONE,
$ B, LDB, U(IK,1), LDU, ZERO, DWORK(N+1), MAXN )
C
DO 40 IS = 1, IREM - 1
CALL DGEMV( 'No transpose', N, N, ONE, A, LDA,
$ DWORK((IS-1)*N+1), 1, UPD, DWORK(IS*N+1), 1 )
40 CONTINUE
C
C Initialize the last IREM output vectors.
C
CALL DGEMM( 'Transpose', 'Transpose', IREM, P, N, ONE,
$ DWORK, MAXN, C, LDC, ZERO, Y(IK,1), LDY )
C
C Prepare the final state vector.
C
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ U(IK+IREM-1,1), LDU, ZERO, DWORK, 1 )
CALL DGEMV( 'No transpose', N, N, ONE, A, LDA,
$ DWORK((IREM-1)*N+1), 1, UPD, DWORK, 1 )
C
ELSE IF ( IREM.EQ.1 ) THEN
C
C Compute the last 1 output vectors.
C
CALL DGEMV( 'No transpose', P, N, ONE, C, LDC, DWORK, 1,
$ ZERO, Y(IK,1), LDY )
C
C Prepare the final state vector.
C
CALL DCOPY( N, DWORK, 1, DWORK(N+1), 1 )
CALL DGEMV( 'No transpose', N, M, ONE, B, LDB,
$ U(IK,1), LDU, ZERO, DWORK, 1 )
CALL DGEMV( 'No transpose', N, N, ONE, A, LDA,
$ DWORK(N+1), 1, UPD, DWORK, 1 )
END IF
C
C Set the final state vector.
C
CALL DCOPY( N, DWORK, 1, X, 1 )
C
END IF
C
C Add the direct contribution of the input to the output vectors.
C
CALL DGEMM( 'No transpose', 'Transpose', NY, P, M, ONE, U, LDU,
$ D, LDD, ONE, Y, LDY )
C
RETURN
C *** Last line of TF01MY ***
END
|